

STANDARD OPERATING PROCEDURES

WASHINGTON CENTER

Ch 1 General Information	Ch 2 Operational Continuity	Ch 3 Split Operations	Ch 4 Sector Information	Ch 5 Quick Ref Guide	Ch 6 Traffic Management	Ch 7 Special Operations
Using this Document	CRC	Consolidation Strategy	Linden (05)	Descend Via Bottom Alts	TMU Positions	General
Word Meanings	Secondary Positions	Assumption of App AOR	Dixon (09)	TRACON Handoffs	Departure Releases	Special Use Airspace
Abbreviations	Use of Autotrack	2-Way Split	Brooke (12)	Exit Rules (Internal)	Release Times	Aerial Refueling
Area of Responsibility	Sector Team	3-Way Split	Swann (17)	Exit Rules (External)	Flying Times IAD	Carrier Operations
Adj ARTCC Shelving	ERAM		Woodstown (19)	Airway Exit Fixes	Flying Times DCA	Intercept Operations
Terminal Airspace	Datablock Management		Blackstone (20)	ZDC32 2-Way Chart	Flying Times BWI	Airspace Phraseology
Assumed APP Airspace	Procedure Altitude		Gordonsville (32)	ZDC12 2-Way Chart	MIT Procedures	
	Fourth Line		Raleigh (36)	ZDC32 3-Way Chart	Route Initiatives	
	Route Amendments		Marlinton (37)	ZDC12 3-Way Chart	Tools and Reference	
	Single Letter Airport Identifiers		Casino (51)	ZDC19 3-Way Chart		
	Aircraft Away Status		Tech (52)		•	
	AIT Procedures		Salisbury (54)			
	TDLS		Coyle (58)			
	ATIS		Sea Isle (59)			
	IDS					

Table of Contents

Index

VIRTUAL AIR TRAFFIC SIMULATION NETWORK VATUSA DIVISION – WASHINGTON ARTCC

SUBJ: vZDC-ZDC-P-01I, effective December 18, 2025

This order provides direction and guidance for the day-to-day operations of the Washington ARTCC and prescribes air traffic control procedures and phraseology. Controllers are required to be familiar with the provisions of these procedures.

This document is only to be used in a simulated environment. This document shall not be referenced or utilized in live operations in the National Airspace System (NAS). The Washington ARTCC, VATUSA, and VATSIM do not take any responsibility for uses of this order outside of the simulation environment.

Justin R. McElvaney
Air Traffic Manager
Washington ARTCC

Statement of Effect 2

RECORD OF CHANGES

Revision E (3/15/23)

- Draft concept and outline introduced.
- Incorporated ZDC sectorization and replaced area breakdown to facilitate better airspace configuration based on traffic demands.
- Expanded route and restriction data.
- Incorporated descend via and exit restriction guidance.

Revision F (9/9/24)

- Expanded CRC and other controller tools guidance and provided standardization of the use of these tools.
- Introduces initial D-Side position standards and responsibilities.
- Permits trainees in enroute to work as D-Side controllers.
- Adds Quick Reference Guide and revamped document wide quick link navigation.

Revision G (6/2/25)

- Relabeled to align with vZDC publications label plan.
- Reorganized Chapter 1 to include Section 3, Area of Responsibility.
- Resorted Airway Exit Fix tables to sort exclusively by airway number within airway type.
- Includes Tier 2 designation statement.
- Provided guidance on managing second frequency for operational efficiency.
- Added IRONS# crossing for ZDC20 to MTV for turboprop/prop arrivals.
- Replace Q97 route with Q108 route for JFK arrivals via KALDA.

Revision H (9/22/25)

- Cover table quick link labels adjusted to accommodate additional chapter links.
- Added Chapter 6, Traffic Management Unit; established TMU operational policy and procedures.
- Added Chapter 7, Special Operations; incorporates ZDC specific procedures from the vZDC-USNv LOA.
- Updated TRSTN# crossing to CABRL.
- Changed join-by fix on SITTR.GIBBS# to KILMR from OTTTO.
- Added additional acronyms to the terms section.

Revision I (12/18/25)

- Added ZNY closed, handoff to N90 (CAMRN @ 110 / 250kts) requirement.
- Fixed broken hyperlinks associated with QRG shortcuts and single letter airport ID.
- Added Virtual Voice Switching and Communications System (vVSCS) procedures.

Record of Changes 3

Table of Contents

Chapter 1. General	13
Section 1. Introduction	13
1–1–1. PURPOSE OF THIS ORDER	
1–1–2. AUDIENCE	13
1-1-3. WHERE TO FIND THIS ORDER	13
1-1-4. WHAT THIS ORDER CANCELS	13
1-1-5. EXPLANATION OF CHANGES	13
1–1–6. DENOTATION OF CHANGES	13
1-1-7. EFFECTIVE DATES AND SUBMISSIONS FOR CHANGES	13
1-1-8. RECOMMENDATION FOR PROCEDURAL CHANGES	14
1-1-9. HOW TO USE THIS DOCUMENT	14
Section 2. Terms of Reference	15
1–2–1. WORD AND TERM MEANINGS	15
1–2–2. SYMBOLS AND MARKUP USAGE	15
1–2–3. ABBREVIATIONS	15
Section 3. Area of Responsibility	18
1–3–1. WASHINGTON CENTER AIRSPACE DIAGRAM	18
1-3-2. ADAPTED SECTOR POSITIONS AND FREQUENCIES	18
1–3–3. TIER 2 DESIGNATION	19
1-3-4. REDUCED SEPARATION ELIGIBILITY AREA	19
1-3-5. ADJACENT ARTCC AIRSPACE SHELVING	19
1-3-6. DELEGATED TERMINAL AIRSPACE	22
1-3-7. TERMINAL AIRSPACE ASSUMED BY SECTOR	23
Chapter 2. Operational Continuity	24
Section 1. Consolidated Radar Client	24
2–1–1. GENERAL	
2-1-2. SECONDARY POSITION USAGE	24
2-1-3. AUTOTRACK CONFIGURATION	24
2-1-4. CHANGE POSITION FUNCTION	24
Section 2. Sector Team Responsibilities	26
2-2-1. VATSIM ADAPTED CONCEPT OF OPERATIONS	26
2-2-2. RADAR POSITION (R)	26
2-2-3. RADAR ASSOCIATE (RA)	26

27
28
28
28
28
28
28
28
29
29
29
29
30
30
32
32
32
32
32
32
34
34
34
35
35
36
36
36
36
37
37
37
38
38
38
38

2-9-4. VIRTUAL VOICE SWITCHING AND COMMUNICATIONS SYSTEM (VSCS)	38
Section 10. Information Display System	40
2–10–1. OVERVIEW	40
2-10-2. MANAGING AIRPORT FLOW STATUS	40
2-10-3. BROADCAST NOTICES	40
2-10-4. EXTERNAL LANDING DIRECTION	40
Chapter 3. Deconsolidated Operations	41
Section 1. Concept of Operations	
3–1–1. OVERVIEW	
3-1-2. PRIMARY MODIFIED CONSOLIDATION STRATEGY	41
3-1-3. HOW TO USE RESTRICTION TABLES	41
3-1-4. ASSUMPTION OF DELEGATED APPROACH CONTROL AIRSPACE	41
Section 2. 2-Way Consolidation	42
3–2–1. SECTORIZATION NARRATIVE	42
3-2-2. ASSIGNMENT OF AIRSPACE	42
3-2-3. GORDONSVILLE RESTRICTIONS GIVEN (05/20/32/37/52 @ 32)	43
3-2-4. BROOKE RESTRICTIONS GIVEN (09/12/17/19/36/51/54/58/59 @ 12)	43
3-2-5. ASSUMED TERMINAL AIRSPACE DELEGATION (2-WAY)	43
Section 3. 3-Way Consolidation	44
3-3-1. SECTORIZATION NARRATIVE	44
3-3-2. ASSIGNMENT OF AIRSPACE	44
3-3-3. GORDONSVILLE RESTRICTIONS GIVEN (05/20/32/37/52 @ 32)	45
3-3-4. BROOKE RESTRICTIONS GIVEN (9/12/36/54 @ 12)	45
3-3-5. WOODSTOWN RESTRICTIONS GIVEN (17/19/51/58/59 @ 19)	
3-3-6. ASSUMED TERMINAL AIRSPACE DELEGATION (3-WAY)	45
Chapter 4. Sector Information	47
Section 1. Linden (05)	47
4-1-1. SECTOR NARRATIVE	47
4-1-2. ASSIGNMENT OF AIRSPACE	47
4-1-3. SECTOR PROCEDURES (RECEIVED)	47
4-1-4. SECTOR PROCEDURES (GIVEN)	47
4-1-5. TERMINAL AIRSPACE ASSUMED	48
Section 2. Dixon (09)	49
4–2–1. SECTOR NARRATIVE	49
4-2-2. ASSIGNMENT OF AIRSPACE	49
4–2–3 SECTOR PROCEDURES (RECEIVED)	49

4-2-4. SECTOR PROCEDURES (GIVEN)	50
4-2-5. TERMINAL AIRSPACE ASSUMED	50
Section 3. Brooke (12)	51
4-3-1. SECTOR NARRATIVE	51
4-3-2. ASSIGNMENT OF AIRSPACE	51
4-3-3. SECTOR PROCEDURES (RECEIVED)	51
4-3-4. SECTOR PROCEDURES (GIVEN)	51
4-3-5. TERMINAL AIRSPACE ASSUMED	52
Section 4. Swann (17)	53
4-4-1. SECTOR NARRATIVE	53
4-4-2. ASSIGNMENT OF AIRSPACE	53
4-4-3. SECTOR PROCEDURES (RECEIVED)	53
4-4-4. SECTOR PROCEDURES (GIVEN)	53
4-4-5. TERMINAL AIRSPACE ASSUMED	54
Section 5. Woodstown (19)	55
4-5-1. SECTOR NARRATIVE	55
4-5-2. ASSIGNMENT OF AIRSPACE	55
4-5-3. SECTOR PROCEDURES (RECEIVED)	55
4-5-4. SECTOR PROCEDURES (GIVEN)	55
4-5-5. TERMINAL AIRSPACE ASSUMED	56
Section 6. Blackstone (20)	57
4-6-1. SECTOR NARRATIVE	57
4-6-2. ASSIGNMENT OF AIRSPACE	57
4-6-3. SECTOR PROCEDURES (RECEIVED)	57
4-6-4. SECTOR PROCEDURES (GIVEN)	58
4-6-5. TERMINAL AIRSPACE ASSUMED	58
Section 7. Gordonsville (32)	59
4-7-1. SECTOR NARRATIVE	59
4-7-2. ASSIGNMENT OF AIRSPACE	
4-7-3. SECTOR PROCEDURES (RECEIVED)	59
4-7-4. SECTOR PROCEDURES (GIVEN)	
4-7-5. TERMINAL AIRSPACE ASSUMED	60
Section 8. Raleigh (36)	61
4-8-1. SECTOR NARRATIVE	61
4-8-2. ASSIGNMENT OF AIRSPACE	61
4-8-3. SECTOR PROCEDURES (RECEIVED)	6 ⁴

4-8-4. SECTOR PROCEDURES (GIVEN)	61
4-8-5. TERMINAL AIRSPACE ASSUMED	62
Section 9. Marlinton (37)	63
4-9-1. SECTOR NARRATIVE	63
4-9-2. ASSIGNMENT OF AIRSPACE	63
4-9-3. SECTOR PROCEDURES (RECEIVED)	63
4-9-4. SECTOR PROCEDURES (GIVEN)	63
4-9-5. TERMINAL AIRSPACE ASSUMED	64
Section 10. Casino (51)	65
4–10–1. SECTOR NARRATIVE	
4-10-2. ASSIGNMENT OF AIRSPACE	65
4-10-3. SECTOR PROCEDURES (RECEIVED)	65
4-10-4. SECTOR PROCEDURES (GIVEN)	66
4-10-5. TERMINAL AIRSPACE ASSUMED	67
Section 11. Tech (52)	68
4–11–1. SECTOR NARRATIVE	
4-11-2. ASSIGNMENT OF AIRSPACE	68
4-11-3. SECTOR PROCEDURES (RECEIVED)	68
4-11-4. SECTOR PROCEDURES (GIVEN)	68
4-11-5. TERMINAL AIRSPACE ASSUMED	69
Section 12. Salisbury (54)	70
4-12-1. SECTOR NARRATIVE	70
4-12-2. ASSIGNMENT OF AIRSPACE	70
4-12-3. SECTOR PROCEDURES (RECEIVED)	70
4-12-4. SECTOR PROCEDURES (GIVEN)	70
4-12-5. TERMINAL AIRSPACE ASSUMED	71
Section 13. Coyle (58)	72
4–13–1. SECTOR NARRATIVE	72
4-13-2. ASSIGNMENT OF AIRSPACE	72
4-13-3. SECTOR PROCEDURES (RECEIVED)	72
4-13-4. SECTOR PROCEDURES (GIVEN)	72
4-13-5. TERMINAL AIRSPACE ASSUMED	73
Section 14. Sea Isle (59)	74
4–14–1. SECTOR NARRATIVE	74
4-14-2. ASSIGNMENT OF AIRSPACE	74
4-14-3. SECTOR PROCEDURES (RECEIVED)	74

4-14-4. SECTOR PROCEDURES (GIVEN)	75
4-14-5. TERMINAL AIRSPACE ASSUMED	75
Chapter 5. Quick Reference Guide	76
Section 1. QRG Directory	76
Section 2. ZDC Issued Descend-Via Bottom Altitudes	77
5–2–1. POTOMAC TRACON	
5–2–2. RALEIGH TRACON	77
5-2-3. NEW YORK ARTCC AIRPORTS	77
5–2–4. ATLANTA ARTCC AIRPORTS	77
Section 3. TRACON to TRACON Handoff Codes	78
5–3–1. FROM PCT	78
5–3–2. FROM ACY	78
5–3–3. FROM DOV	78
5–3–4. FROM FAY	78
5–3–5. FROM GSB	78
5–3–6. FROM ILM	78
5–3–7. FROM NHK	79
5–3–8. FROM NKT	79
5–3–9. FROM NTU	79
5–3–10. FROM ORF	79
5–3–11. FROM RDU	79
5–3–12. FROM ROA	79
Section 4. Exit Restrictions (To Internal)	80
5–4–1. ACY	80
5–4–2. DOV	80
5–4–3. FAY	80
5–4–4. ILM	80
5–4–5. NKT	80
5–4–6. ORF	80
5–4–7. PCT (CHP)	80
5–4–8. PCT (JRV)	
5–4–9. PCT (MTV)	
5–4–10. PCT (SHD)	
5–4–11. RDU	
5–4–12. ROA	81
Section 5. Exit Restrictions (To External)	82

5–5–1. ZBW ARTCC	82
5–5–2. ZID ARTCC	82
5–5–3. ZJX ARTCC	82
5–5–4. ZNY ARTCC	82
5–5–5. ZOB ARTCC	83
5–5–6. ZTL ARTCC	83
5-5-7. N90 TRACON	84
5–5–8. PHL TRACON	84
5–5–9. CKB TRACON	84
5-5-10. GSO TRACON	84
5-5-11. FINAL ZDC AIRSPACE FIX BY AIRWAY	84
Section 6. ZDC Airspace Configuration Charts	87
5–6–1. ZDC FULL FACILITY	87
5–6–2. ZDC32 (2-WAY)	88
5–6–3. ZDC12 (2-WAY)	89
5–6–4. ZDC32 (3-WAY)	90
5–6–5. ZDC12 (3-WAY)	91
5–6–6. ZDC19 (3-WAY)	92
Chapter 6. Traffic Management Unit	93
Section 1. Overview	93
6–1–1. PURPOSE	93
6-1-2. SCOPE OF OPERATIONS	93
6-1-3. INTEGRATION WITH IDS	93
6-1-4. OBJECTIVES	93
Section 2. Positions and Responsibilities	94
6–2–1. GENERAL	94
6-2-2. TRAFFIC MANAGEMENT COORDINATOR (TMC)	94
6-2-3. TRAFFIC MANAGEMENT EXTERNAL (TME)	94
6-2-4. TRAFFIC MANAGEMENT LOCAL (TML)	94
6-2-5. TRAFFIC MANAGEMENT RELEASE (TMR)	95
Section 3. Departure Release Request Workflow	96
6–3–1. GENERAL	
6-3-2. TOWER RESPONSIBILITIES	96
6-3-3. TMU RESPONSIBILITIES	
6–3–3. TMU RESPONSIBILITIES	96

6–4–1. GENERAL	98
6-4-2. TABLE STRUCTURE	98
6-4-3. CALCULATION OF RELEASE TIMES	98
6-4-4. LIMITATIONS	98
6-4-5. WASHINGTON DULLES INTERNATIONAL (IAD)	99
6-4-6. WASHINGTON NATIONAL (DCA)	99
6-4-7. BALTIMORE/WASHINGTON INTERNATIONAL (BWI)	99
Section 5. Miles-in-Trail Procedures	100
6–5–1. GENERAL	100
6-5-2. CALCULATING MIT	100
6-5-3. BASELINE MIT VALUES	100
6-5-4. REQUESTING MIT FROM ADJACENT FACILITIES	101
6-5-5. PROVIDING MIT TO ADJACENT FACILITIES	101
6-5-6. ACTIVE MIT ADJUSTMENTS	101
6-5-7. RESTRICTION FIXES	102
Section 6. Route Initiatives	104
6–6–1. GENERAL	104
6-6-2. TACTICAL REROUTE	104
6-6-3. STANDING REROUTE	104
6-6-4. RESPONSIBILITY FOR FLIGHT PLAN AMENDMENTS	105
Section 7. Tools and Reference	106
6-7-1. INFORMATION DISPLAY SYSTEM	106
6–7–2. VATUSA TOOLS	106
6-7-3. SIMTRAFFIC TOOLS	106
6-7-4. CONSOLIDATED RADAR CLIENT	107
6-7-5. SITUATIONAL AWARENESS TOOLS	108
6-7-6. EVENT SPECIFIC WORKSHEETS	109
Chapter 7. Special Operations	110
Section 1. General	110
7–1–1. PURPOSE	110
7–1–2. SCOPE	110
Section 2. Special Use Airspace	111
7–2–1. SCHEDULING	
7–2–2. MISSION NUMBERS	
7–2–3. ACTIVATION	
7-2-4 FNTRY CLEARANCE	

113114114115115
114114115
114 114 114
114 114
114
114
113
113
113
113
113
112
112
111

Chapter 1. General

Section 1. Introduction

1-1-1. PURPOSE OF THIS ORDER

This order standardizes the duties and responsibilities of controllers working ZDC airspace. The procedures established in this order are the Standard Operating Procedures utilized by any controller providing Air Traffic Control Services for ZDC and the underlying facilities when not otherwise staffed.

1-1-2. AUDIENCE

All controllers working ZDC airspace or providing support services associated with the flow of traffic at ZDC.

1-1-3. WHERE TO FIND THIS ORDER

This order is available on the vZDC web site at https://www.vzdc.org/publications/downloads.

1-1-4. WHAT THIS ORDER CANCELS

This order cancels vZDC-ZDC-P-01H, dated September 9, 2025.

1-1-5. EXPLANATION OF CHANGES

Initial guidance for use of vVSCS was added along with ZNY closed procedures for arrivals via CAMRN to N90 to align with the ZDC-ZNY Letter of Agreement. Additional minor corrections throughout were made and are not denoted as there was no policy or procedural impact.

1-1-6. DENOTATION OF CHANGES

Changes are indicated via the use of the shading tool. The changed text is highlighted in grey to indicate a change. No indication is made where text was removed from the document. Grammatical revisions and other changes to improve readability without changes in policy will not be marked.

EXAMPLE -

Changed or added text is highlighted grey.

1-1-7. EFFECTIVE DATES AND SUBMISSIONS FOR CHANGES

This publication is independent of normal publication cycles and will be revised when changes are determined necessary. When this document is under revision, notification will be made through normal facility notification methods to communicate to all controllers for solicitation of feedback.

Introduction 13

1-1-8. RECOMMENDATION FOR PROCEDURAL CHANGES

When this publication is under review, a request for comment from the controller group will be published. Recommendations for changes will be submitted in accordance with the guidance provided at the time of solicitation of feedback. Outside published revision periods, send recommendations for change to atm@vzdc.org with any supporting documents and additional information.

1-1-9. HOW TO USE THIS DOCUMENT

- **a.** This document is organized by chapters. The general organization of this document is based on grouping of information by two distinct groups: complete applicability versus geographic applicability. "Complete applicability" refers to those procedures that are followed regardless of the specific control position the controller is working. "Geographic applicability" refers to procedures that are specific to the airspace being worked and the facilities that coordination is accomplished or prescribed for. Review of the table of contents and the chapter header names will help controllers quickly find the information being sought.
- **b.** The use of hyperlinks throughout this publication is configured to provide quick access to often needed pieces of information. In addition to standard document reference hyperlinks, the use of quick link "buttons" is used throughout. Boxed and/or shaded content indicates a shortcut may be linked.
- **c.** The grid on page one of this document (also accessible by clicking the "ZDC" box at the top left of the SOP document) is an abbreviated table of contents with hyperlinked content for quick access to commonly referenced materials. The grid on the QRG section one page is similarly hyperlinked to provide quick access to information contained within the QRG section of this SOP.
- **d.** Header navigation is standardized across the entire publication with two buttons: QRQ and ZDC. The green QRG will link to the Quick Reference Guide table of contents. The black ZDC will link to page one of this publication where a tailored table of contents with quick linked references is available. Chapter specific shortcuts may also be included in the header navigation bar.

Introduction 14

Section 2. Terms of Reference

1-2-1. WORD AND TERM MEANINGS

As used in this order:

- **a.** Bottom Altitude. Bottom altitude refers to the lowest published altitude on a Standard Terminal Arrival Procedure (STAR). As used in this publication, the bottom altitude entered in a data block (QQ P) is the Ch 5, Sec 2 prescribed bottom altitude associated with the procedure at represents the lowest altitude that an aircraft leaves ZDC airspace at.
- **b.** Join by Fix. The last fix on a flight plan from which the aircraft must be established on a required route segment. The join by fix location is generally near or on the airspace boundary.
- **c.** Market. Where multiple large traffic volume airports exist, these areas may be grouped collectively and referred to as "markets" of traffic in lieu of individually identifying each airport.

EXAMPLE -

New York Markets include EWR, LGA, JFK, TEB, and HPN.

1-2-2. SYMBOLS AND MARKUP USAGE

a. +. Used in routing and restriction tables to indicate that the restriction is applicable to the airport indicated as well as any airports considered as procedurally similar to the primary airport.

EXAMPLE -

PIT+ indicates an associated restriction would apply to PIT as well as satellite airports associated with PIT.

b. #. Represents the publication version of a SID or STAR regardless of the procedure number in effect.

EXAMPLE -

TERKS# represents the TERKS2 (at time of publication) and when a subsequent publication (i.e. TERKS3) is published the restriction would remain applicable.

c. z. A lowercase 'z' following a terminal facility name indicates that the terminal facility (ATCT/TRACON) is referenced and not the specific airport.

EXAMPLE -

ACYz indicates the facility associated with the restriction is ACY ATCT/TRACON.

d. Bold. Text that is **bold** in the sector procedures and routing tables throughout the SOP indicate that the routing is serving a primary or core airport. The overwhelming majority of ZDC traffic is impacted by these restrictions so they are marked for easy identification.

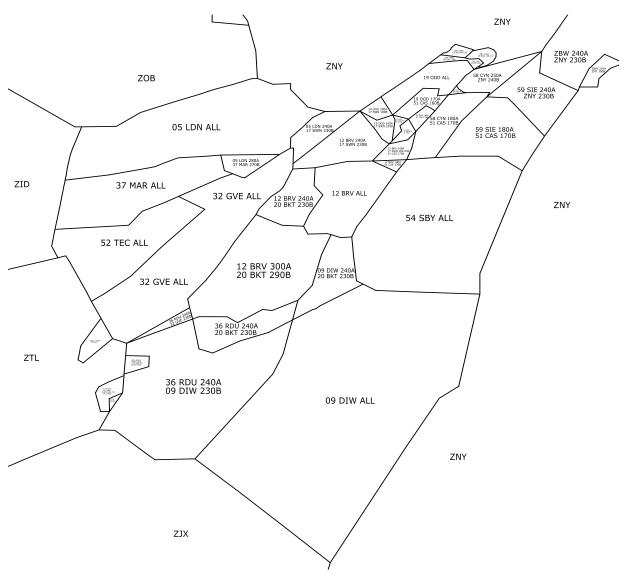
1-2-3. ABBREVIATIONS

As used in this order, the abbreviations listed below have the following meanings:

- **a.** AIT. Automated Information Transfer.
- b. AOA. At or Above [AOA 240; at or above FL240].

Terms of Reference 15

- c. AOB. At or Below [AOB 230; at or below FL230].
- d. AOR. Area of Responsibility.
- e. APP. Approach [approach control].
- f. ARTCC. Air Route Traffic Control Center.
- g. ATIS. Automated Terminal Information Service.
- h. BDRY. Boundary.
- i. CATCC. Carrier Air Traffic Control Center (CATCC).
- j. CFR. Call for Release.
- k. CRC. Consolidated Radar Client.
- I. DSDG. Descending.
- m. D/V. Descend Via.
- **n.** EDCT. Expect Departure Clearance Time.
- o. EDST. Enroute Decision Support Tool.
- **p.** ERAM. En Route Automation Modernization.
- q. ERIDS. En Route Information Display System.
- r. GS. Ground Stop.
- s. IAFDOF. Inappropriate Altitude for Direction of Flight.
- t. IDS. Information Display System.
- u. LOA. Letter of Agreement.
- v. LUFL. Lowest Usable Flight Level.
- w. MIT. Miles-in-trail.
- x. MRU. Military Radar Unit.
- y. PCT. Potomac TRACON.
- z. PDC. Pre Departure Clearance.
- aa. PGUI. Plan-Based Graphical User Interface.
- bb. R (R-Side). Radar Position.
- cc. RA. Radar Associate.
- dd. RVSM. Reduced Vertical Separation Minima.
- **ee.** SATS. Satellite airports; procedurally similar to the major airport served.


Terms of Reference 16

- ff. SFC. Surface.
- gg. SOP. Standard Operating Procedure.
- **hh.** STARS. Standard Terminal Automation Replacement System.
- ii. SUA. Special Use Airspace.
- jj. TDLS. Tower Data-Link System.
- kk. TGUI. Time-Based Graphical User Interface.
- II. TP. Turbo Prop; applicable to turbo prop aircraft only.
- mm. TRACON. Terminal Radar Approach Control.
- nn. TMI. Traffic Management Initiative.
- oo. TMU. Traffic Management Unit.
- pp. VCI. Voice Communication Indicator.
- qq. VSOA. Virtual Special Operations Associations.
- rr. vNAS. Virtual Natural Airspace System.
- ss. vZDC. Virtual Washington ARTCC; as the VATUSA subdivision organization.
- tt. ZBW. Boston ARTCC; as the operational [virtual] air traffic control facility.
- uu. ZDC. Washington ARTCC; as the operational [virtual] air traffic control facility.
- vv. ZID. Indianapolis ARTCC; as the operational [virtual] air traffic control facility.
- ww. ZJX. Jacksonville ARTCC; as the operational [virtual] air traffic control facility.
- xx. ZNY. New York ARTCC; as the operational [virtual] air traffic control facility.
- yy. ZOB. Cleveland ARTCC; as the operational [virtual] air traffic control facility.
- zz. ZTL. Atlanta ARTCC; as the operational [virtual] air traffic control facility

Terms of Reference 17

Section 3. Area of Responsibility

1-3-1. WASHINGTON CENTER AIRSPACE DIAGRAM

1-3-2. ADAPTED SECTOR POSITIONS AND FREQUENCIES

The following sectors have been adapted to vZDC's master sectorization plan. These sectors consolidate sectors from the real world ZDC configuration to provide an optimized for VATSIM configuration plan. These sectors permit the configuration, through combining/decombining of airspace, to numerous different configurations to tailor the sectorization plan based on known or forecast traffic.

TBL 1-3-1
Sector and Frequency Chart

Sector	Identifier	Name	Frequency
05	LDN	Linden	133.55

09	DIW	Dixon	118.82
12	BRV	Brooke	126.87
17	SWN	Swann	134.5
19	OOD	Woodstown	125.45
20	ВКТ	Blackstone	127.75
32	GVE	Gordonsville	133.72
36	RDU	Raleigh	118.92
37	MAR	Marlinton	133.02
51	CAS	Casino	127.7
52	TEC	Tech	133.57
54	SBY	Salisbury	120.97
58	CYN	Coyle	121.02
59	SIE	Sea Isle	133.12
99	N/A	TMU	N/A

NOTE -

ZDC32 (Gordonsville) is the primary sector where ZDC is worked from a single combined position.

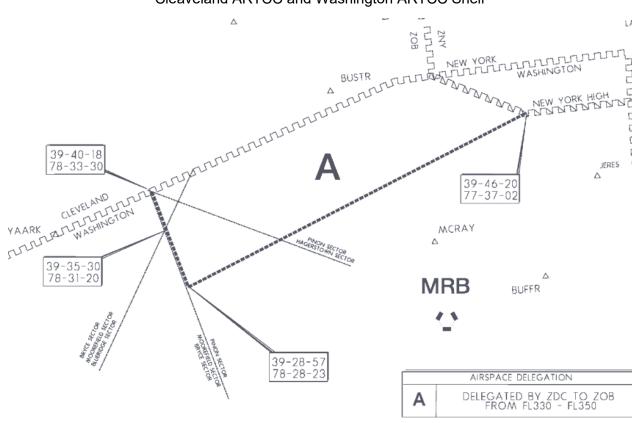
1-3-3. TIER 2 DESIGNATION

Washington ARTCC is designated as a Tier 2 facility and requires a Tier 2 endorsement and VATSIM C1 rating to control.

1-3-4. REDUCED SEPARATION ELIGIBILITY AREA

All ZDC airspace at and below FL230 are eligible for reduced separation when the data block target symbol indicates the track is eligible. Reduced separation targets are indicated by a filled dot instead of a slash (• vs /). Controllers must consider wake turbulence separation requirements that may require a greater separation minima than standard separation.

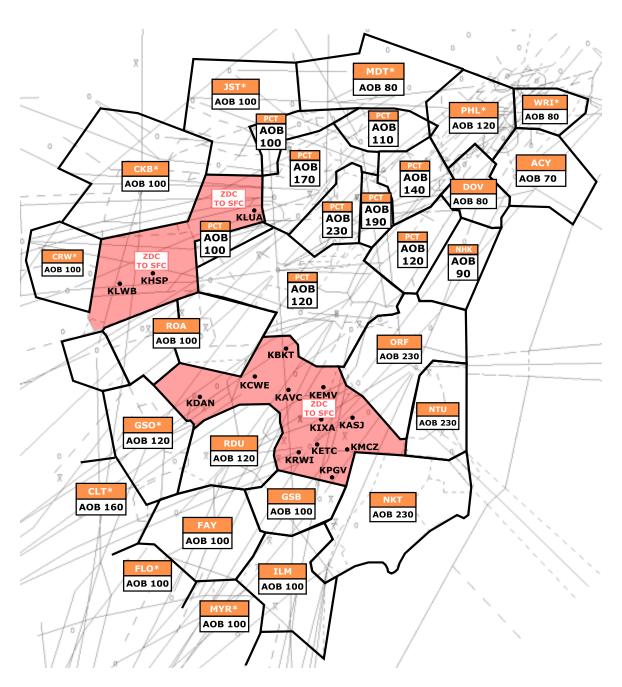
1-3-5. ADJACENT ARTCC AIRSPACE SHELVING


The shelves described below are defined through the associated facility letter of agreement (LOA). These depictions are reproduced in this SOP for reference only. The active letter of agreement is controlling if there is conflict in the below depictions.

- **a. CLT Shelf**. The CLT Shelf is designed to provide ZDC additional airspace (FL240-FL270) within the shelf to permit continued climb out for CLT departures via the KILNS-SID and BARMY-SID.
- **b. RDU Shelf**. The RDU Shelf is designed to provide ZTL additional airspace (FL240-FL270) within the shelf to permit continued climb out for RDU departures via SHPRD-SID.
- **c. ZNY/ZBW/ZDC Shelving**. The boundary airspace between ZNY, ZBW, and ZDC is built to accommodate the streams of traffic each facility manages to the next facility. This structure permits ZDC to pass traffic directly to ZBW without interrupting ZNY primary traffic flows.
- **d. ZOB Shelf A**. This shelf is owned by ZOB FL330-FL350. ZDC climbs PCT area departures to FL320 and the shelf gives ZOB the ability to continue the climb to blend with its traffic near the boundary.

ZNY ZBW 240A ZNY 230B ZNY 120A 19 OOD 100-110 ZBW 310A ZNY 300B 58 CYN 250A ZNY 240B 59 SIE 240A ZNY 230B ZDC ZNY ZDC "RDU SHELF" 36 RDU 280A ZTL 240-270 09 DIW 230B ZTL ZDC

FIG 1-3-5a
Adjacent ARTCC Airspace Shelving Depiction


FIG 1-3-5b
Cleaveland ARTCC and Washington ARTCC Shelf

1-3-6. DELEGATED TERMINAL AIRSPACE

ZDC delegates airspace to terminal facilities as depicted in the figure below. Facilities with an asterisk (*) are *not* controlled by ZDC. When a terminal facility is closed, its airspace is returned to the overlying ARTCC and the respective ARTCC boundary is the applicable airspace boundary regardless of the terminal facilities boundary. When a non-ZDC owned terminal facility is operated from a secondary position by an adjacent ARTCC controller, ZDC will release that terminal facility's airspace in its entirety once coordinated with the adjacent ARTCC controller.

FIG 1-3-4
Delegated Terminal Airspace & ZDC Top-down Service Areas

1-3-7. TERMINAL AIRSPACE ASSUMED BY SECTOR

Facility	Assigned Sector
ACY	Casino (51)
DOV	Casino (51)
FAY	Dixon (09)
GSB	Dixon (09)
ILM	Dixon (09)
NHK	Brooke (12)
NKT	Dixon (09)
NTU	Salisbury (54)
ORF	Salisbury (54)
РСТ	Gordonsville (32)
RDU	Dixon (09)
ROA	Tech (52)

REFERENCE -

Para 3–2–5, 2-Way Split Terminal Airspace Assumed Table Para 3–3–6, 3-Way Split Terminal Airspace Assumed Table

Chapter 2. Operational Continuity

Section 1. Consolidated Radar Client

2-1-1. GENERAL

Consolidated Radar Client (CRC) is the only supported controller client software for ZDC. Controllers working ZDC must utilize CRC to ensure that current maps, procedures, airspace depictions, and letter of agreement requirements are complied with. All functionality of CRC is permitted for use unless specifically restricted by this or another publication.

2-1-2. SECONDARY POSITION USAGE

Center controllers are encouraged to utilize the secondary position function to manage approach control airspace. As a minimum, controllers should maintain a Potomac TRACON consolidated activated secondary position and manage all PCT traffic from the secondary position. Secondary positions make opening and closing of a position simpler and more efficient and alleviate the need to handoff all tracks to the controller opening a position.

2-1-3. AUTOTRACK CONFIGURATION

Use of autotrack should be considered for all primary airfields being controlled. When using a secondary position, controllers must ensure that the autotrack function is enabled in the secondary position for that airfield and not the primary ERAM position.

NOTE -

Use of autotrack does not relieve the controller of accomplishing radar identification steps as prescribed in FAAO 7110.65.

2-1-4. CHANGE POSITION FUNCTION

CRC incorporates a "change position" function. The use of change position is intended for when a position is either being consolidated to another position or is deconsolidating (opening) a new position. Once "change position" is used the controller list will identify the controller using the name and identification of the position changed to.

- **a.** Consolidating. When consolidating a position (i.e. one controller is taking over the airspace from another controller to be worked from a single position) *after* a relief briefing has been given and the gaining controller has assumed responsibility for the position, the controller giving up the position to be consolidated will select "change position" and select the position that the airspace is being combined to. This will move track ownership for all tracks to the consolidated sector and eliminate the need to manually hand off all tracks.
- **b.** Deconsolidating. When deconsolidating a position, controllers may either change to the new position that will be deconsolidated or disconnect and reconnect as the new position.

NOTE -

QRG ZDC vZDC-ZDC-P-01I 12/18/									12/18/25
CRC	Team	ERAM	AIT	Coord	EDST	TDLS	ATIS	vcs	IDS

The callsign the controller is connected as does not change when using change position, only the controller list displayed controller position and identification (sector number / ID) changes. Additionally, the TeamSpeak bot will not change the position assignment in the displayed name following use of change position since the VATSIM connection callsign does not change. When possible it is encouraged for the controller remaining on to disconnect and reconnect with the correct position while the outgoing controller remains connected to maintain track ownership.

Section 2. Sector Team Responsibilities

2-2-1. VATSIM ADAPTED CONCEPT OF OPERATIONS

The ability to simulate sector team operations under vNAS is possible. Due to the limitations currently in both voice switching systems and decision support tools, the traditional (real world) delineation of R/RA position responsibilities has been adapted for operations at ZDC to take advantage of currently available tools and prepare for future updates and releases.

REFERENCE -

FAAO 7110.65, Para 2-10-1, En Route or Oceanic Sector Team Position Responsibilities

2-2-2. RADAR POSITION (R)

The Radar Position, referred to as "R-Side," is the position which is in direct communication with the aircraft, and which uses radar information as the primary means of separation. Duties include:

- **a.** Accept and initiate automated handoffs.
- **b.** Enter assigned altitudes, interim altitudes, and procedural altitudes in the data block.
- **c.** Toggle the Voice Communications Indicator (VCI) for aircraft on/off frequency.
- d. Ensure the flight plan route is up to date when aircraft are cleared direct a point.
- e. Manage data block placement to avoid data block overlap.
- **f.** Assist the radar associate with entering 4th line data entries if task saturated or if off frequency.

2-2-3. RADAR ASSOCIATE (RA)

The Radar Associate, referred to as "D-Side," is the position not in direct communication with aircraft but is able to assist in coordination and sector management with the R-Side controller. Primary responsibilities include:

- **a.** Accept and initiate nonautomated handoffs and ensure the radar position is made aware of the actions.
- **b.** Assist the radar position by accepting or initiating automated handoffs which are necessary for the continued smooth operation of the sector and ensure that the radar position is made immediately aware of any action taken.
 - **c.** Coordinate, including point outs.
 - **d.** Enter 4th line data for assigned speeds, headings, and deviations.
- **e.** Complete flight plan updates, to include complex routing/re-routing entries and advise the radar position when a route is ready to be given.
 - f. Assist radar position in moving data blocks when data blocks are overlapping.

QRG	ZDC vZDC-ZDC-P-01I 12/18									
CRC	Team	ERAM	AIT	Coord	EDST	TDLS	ATIS	vcs	IDS	

g. Ensure the ZDC IDS ERIDS is maintained and kept up to date with all pertinent operational information.

h. Validate and send PDC via TDLS for eligible aircraft and airports.

2-2-4. NON-CERTIFIED S3 RADAR ASSOCIATE OPERATIONS

S3 rated controllers that have completed their Potomac TRACON endorsement (CHP, SHD, and MTV) may work as a radar associate (D-Side) controller when a properly endorsed (regular endorsement or solo endorsement) controller is working ZDC. In this role the S3 controller must receive approval from the working radar position to open the radar associate position and be familiar with this publication and all ZDC Letters of Agreement.

QRG	ZDC vZDC-ZDC-P-01I								
CRC	Team	ERAM	AIT	Coord	EDST	TDLS	ATIS	vcs	IDS

Section 3. En Route Automation Modernization (ERAM)

2-3-1. DISPLAY SETTINGS

ERAM display settings are *not* shared among those controllers active on the position. Controllers may set the ERAM display in a way that is most beneficial and efficient for their own use. Some maps in ERAM may not be deselected. Airspace (adjacent ARTCC and internal sectorization) must be displayed at all times.

2-3-2. DATA BLOCK MANAGEMENT

Data blocks must always be kept current. The sector team will ensure that altitudes, routes, 4th line, and other flight plan data are always accurate and take immediate action to correct an out-of-date element.

REFERENCE -

FAAO 7110.65AA, Para 5-13-3, Computer Entry of Flight Plan Information

2-3-3. VOICE COMMUNICATION INDICATOR

The voice communication indicator may be toggled on/off by left clicking the space left of the altitude line in the data block or by typing //<CID><ENTER>. Beginning with initial audio contact with an aircraft, controllers must utilize the voice communication indicator to reflect the current status of voice communications.

REFERENCE -

FAAO 7110.65AA, Para 2-1-17d, Radio Communications

2-3-4. ASSIGNED ALTITUDE (QZ)

The altitude in the flight plan database ("filed" or "requested final" altitude) is used when an aircraft is climbing to the requested cruise altitude. When an aircraft is climbing to an altitude other than its requested final cruise altitude, use the interim altitude so as not to overwrite the requested altitude once it becomes available. Aircraft given a descent to another altitude or descending to cross a fix will have the new assigned altitude entered.

2-3-5. INTERIM ALTITUDE (QQ)

Interim altitude ("T" altitude) is used when an aircraft is climbing or descending to an altitude other than its requested final cruise altitude. Generally interim altitudes should only be used for climbing aircraft being stopped prior to reaching their final requested altitude. However, an aircraft that has requested a lower altitude that cannot be immediately cleared to the new requested altitude may have an interim altitude entered until the new requested altitude can be assigned.

2-3-6. PROCEDURE ALTITUDE (QQ P)

Procedure altitudes are entered when an aircraft is cleared to vertically navigate (VNAV) on a SID/STAR with published restrictions. When cleared to "descend via" the bottom altitude of the procedure, or the bottom altitude as prescribed in this order for the procedure, is entered.

QRG	ZDC	vZDC-ZDC-P-01I 12/18/2									
CRC	Team	ERAM	AIT	Coord	EDST	TDLS	ATIS	vcs	IDS		

2-3-7. FOURTH LINE ENTRIES (QS)

Fourth line data used for forwarding control information must be entered in accordance with FAAO 7110.65, Para 5-4-10, En Route Forth Line Data Block Usage. When no longer required, the fourth line data should be cleared. Controllers may display destination, type, or nothing, in the fourth line except that when control information is entered it must be displayed. Controllers may enter fourth line data by clicking on the appropriate field on the data block or via the QS entry.

REFERENCE -

FAAO 7110.65, Para 5-4-10, En Route Forth Line Data Block Usage

EXAMPLE -

Headings: H360, H270, 20L, 15R, PH

Speeds: S250, 280-, M80, M78+

Weather Deviation: DL/RIDGY, DR/GVE, D/CHS

2-3-8. ROUTE AMMENDMENTS (QU)

When an aircraft route is amended, ensure the route is properly amended. The Q command route functionality (QU) allows for accurate present position to a point (or points) amendment. QU amendment functionality does not permit procedural amendment (SID, STAR, airway, etc.) but does accept clearances direct to a point on procedural elements.

2-3-9. AUTOMATED POINT OUTS (QP)

Automated point outs between ERAM positions (inter or intra) are permitted. Prior to forcing the data block for the point out the controller must ensure the aircraft's altitude, route, and fourth line data elements are accurate. Automated point outs are approved based on data at the time the QP message is sent. If any change occurs subsequent to sending the QP message coordination must be accomplished.

NOTE -

CRC models real world ERAM/STARS and thus does not support ERAM to STARS or STARS to ERAM automated point out functionality.

2-3-10. SINGLE LETTER AIRPORT IDENTIFIERS

The following single letters displayed in the third line (right of CID) indicate landing airport. Letters with more than one airport are grouped for common restrictions or same airport procedures.

TBL 2-3-10
Single Letter Airport Identifiers

Letter	Airport
А	ATL
В	BWI
С	CLT, AKH, EQY, LKR, UZA
D	IAD
E	EWR

QRG	ZDC	vZDC-ZDC-	P-01I						12/18/25
CRC	Team	ERAM	AIT	Coord	EDST	TDLS	ATIS	vcs	IDS
F		FLL							
G		LWB							
Н		HPN							
J		JFK, <i>FRG</i>							
K		TPA							
L		LGA							
М		MIA							
N		ADW							
Р		PHL							
Q		PIT							
R		RDU							
S		JQF, RUQ, VU	J						
Т		TEB, 39N, 47I	I, CDW, LD.	I, MMU, SM	Q				
U		TTN, 3NJ6, D	L, LOM, M	QS, OQN, PI	IE, PTW, UK	(T, N47, N57	7		
V		PBI							
W		DCA							
Х		BOS							
Υ		BDL, BAF, CEF	, HFD						
Z		МСО							

2-3-11. DEPARTURES FROM NON-TOWERED AIRPORTS

When an IFR departure is releases from a non-towered airport controlled by ZDC, the following procedure will be used:

- **a.** Enter a departure message to activate the aircraft's flight plan (DM).
- **b.** Start a track for the aircraft at the departure airport (QT).
- c. Enter the initial altitude the aircraft was cleared to as an interim altitude (QQ).
- d. Enter the clearance void time in the fourth line of the data block (QS).
- e. Force a data block to any ERAM position that coordination was accomplished for (QP).

NOTE -

Once the aircraft departs, the track should automatically acquire. Automatic association of the track with the target symbol may be used as radar identification in ERAM.

2-3-12. AIRCRAFT AWAY STATUS

When an aircraft requests to be away for any period of time, controllers will use the vector line to ensure that the return time will occur while the aircraft is within their area of responsibility, prior to any anticipated handoff, and prior to any anticipated descent. Consideration of potential traffic and spacing requirements should also be given when approving long periods of time. Times

QRG ZDC vZDC-ZDC-P-01I									12/18/25
CRC	Team	ERAM	AIT	Coord	EDST	TDLS	ATIS	vcs	IDS

longer than 15 minutes away should generally not be approved. Enter the anticipated time expected back in the fourth line.

EXAMPLE -

A1530 in the fourth line indicates the aircraft is away and will return at 15:30Z.

QRG ZDC vZDC-ZDC-P-01I 12/1									12/18/25
CRC	Team	ERAM	AIT	Coord	EDST	TDLS	ATIS	vcs	IDS

Section 4. Automated Information Transfer (AIT)

2-4-1. RDU ARRIVALS FROM SECTOR 54

A flash through AIT has been established for Raleigh arrivals on the TAQLE-STAR from Sector 54 only. When a handoff is initiated from Sector 54 to Sector 09, upon accepting the handoff, Sector 09 may immediately initiate a handoff to Sector 20. Sector 54 may transfer communications to Sector 09 or may elect to wait until Sector 20 accepts the handoff, and transfer communications directly to 20. However, if Sector 09 does not promptly flash the aircraft through, Sector 51 shall promptly transfer communications to Sector 09.

2-4-2. EASTBOUND VIA HCM TO SECTOR 54

A flash through AIT has been established for traffic routed eastbound through Sector 09, in the immediate vicinity of HCM, which will subsequently enter Sector 54. When a handoff is initiated from Sector 12 or 20 to Sector 09, upon accepting the handoff Sector 09 may immediately initiate a handoff to Sector 54. Sector 12/20 may transfer communications to Sector 09 or may elect to wait until Sector 54 accepts the handoff, and transfer communications directly to Sector 54. However, if Sector 09 does not promptly flash the aircraft through, Sector 12/20 shall promptly transfer communications to Sector 09.

2-4-3. SOUTHBOUND DEPARTURES FROM SECTOR 51

A dual AIT has been established for southbound departures from Sector 51. When a handoff is initiated from Sector 51 to either Sector 58 or 59, upon accepting the handoff, they may release a higher altitude to Sector 51 by entering it in the data block. Sector 51 may (but is not required to) issue a climb to the specified altitude. Further, Sectors 58 or 59 may subsequently also initiate a handoff to Sector 54. Sector 51 may either switch the aircraft to 58/59, or wait until Sector 54 accepts the handoff, and then transfer communications directly to 54.

NOTE -

If Sector 51 elects to utilize the flash through AIT, they must also utilize the altitude release AIT. Either climb the aircraft to the displayed altitude, or transfer communications to 58/59, as appropriate.

2-4-4. CLT DEPARTURES VIA KILNS/BARMY

A flash through AIT has been established with Atlanta Center for Charlotte departures via KILNS/BARMY, through the Charlotte Shelf. ZTL shall climb the aircraft to FL230 and initiate a handoff to Sector 09. Upon accepting the handoff, Sector 09 may immediately initiate a handoff to Sector 36. ZTL may transfer communications directly to Sector 09 or may elect to wait until Sector 36 accepts the handoff, and transfer communications directly to 36. However, if Sector 09 does not promptly flash the aircraft through, ZTL shall promptly switch the aircraft to Sector 09.

2-4-5. RDU DEPARTURES VIA SHPRD

A flash through AIT has been established with Atlanta Center for Raleigh departures via SHPRD, through the Raleigh Shelf. Sector 09 shall climb the aircraft to FL230 and initiate a handoff to T29.

QRG ZDC vZDC-ZDC-P-01I 12/2									
CRC	Team	ERAM	AIT	Coord	EDST	TDLS	ATIS	vcs	IDS

Upon accepting the handoff, T29 may immediately initiate a handoff to T33. Sector 09 may transfer communications to T29 or may elect to wait until T33 accepts the handoff, and transfer communications directly to T33. However, if T29 does not promptly flash the aircraft through, Sector 09 shall promptly transfer communications to T29.

QRG ZDC vZDC-ZDC-P-01I 12/1									12/18/25
CRC	Team	ERAM	AIT	Coord	EDST	TDLS	ATIS	vcs	IDS

Section 5. Internal Coordination and Procedures

2-5-1. INAPPROPRIATE ALTITUDE FOR DIRECTION OF FLIGHT (IAFDOF)

Aircraft will be assigned final cruise altitudes appropriate for direction of flight unless coordinated. Aircraft climbing or descending may be assigned IAFDOF for traffic separation, when climbing or descending to comply with an SOP or LOA altitude requirement, or when climbing to or descending to the top or bottom of a sector's airspace volume and in such cases do not require coordination or approval.

2-5-2. AUTOMATIC RELEASE FOR CONTROL

The receiving sector has control for turns up to twenty (20) degrees left and right of course upon contact unless restricted elsewhere in this order. The receiving sector is responsible for any coordination that may be required because of the use of the provisions of this procedure. Control for altitude changes is not given automatically unless such control is granted elsewhere in this order.

Section 6. Enroute Decision Support Tool (EDST)

2-6-1. RESERVED

This section is reserved for future EDST deployment and implementation policy.

Section 7. Tower Data-Link System

2-7-1. USAGE

Controllers will utilize Tower Data-Link System (TDLS) to send PDC to eligible aircraft at participating airports (ADW, BWI, DCA, IAD, RDU).

2-7-2. VALIDATION

Confirm that the filed plan meets any requirements necessary by this order or Letter of Agreement. The general routing requirements should be followed when issuing clearances.

2-7-3. PASSING CLEARED AIRCRAFT INFORMATION

When a facility opens below ZDC that has ownership of a PDC eligible airport, the ZDC PDC list in TDLS will no longer display aircraft for that airport. It is possible that the controller coming online may not have received an accurate list of cleared aircraft when they assumed TDLS functionality for the airport(s) being served. Controllers should include in the brief any notes about cleared aircraft that can be recalled and remind the incoming controller that the departure frequency assigned to some aircraft may now be incorrect. If a verbal clearance is given to an aircraft, controllers must use the "dump" function so that a PDC is not subsequently sent.

Section 8. Automated Terminal Information Service

2-8-1. TOP-DOWN ATIS MANAGEMENT

ATIS should be published for up to four airports (VATSIM connection limit). It is recommended that prior to activating the session, but after connecting to the network, the controller publishes the ATIS for those airports that will have an ATIS maintained to reduce workload once the session is activated.

2-8-2. ORDER OF PREFERRED FACILITIES

The following list is the preferred order for which facilities should have an ATIS published. When controllers under ZDC come online where an ATIS is being maintained by ZDC, that ATIS should be given to the incoming controller and an additional ATIS using the below list used in its place to maximize ATIS coverage across the facility. Controllers should only maintain the ATIS for facilities that they are directly providing service to.

- a. DCA.
- **b.** IAD.
- c. BWI.
- d. RDU.
- e. ORF.
- f. RIC.
- g. ROA.
- h. ILM.
- i. FAY.
- j. ACY.

Section 9. Voice Communication Systems

2-9-1. **OVERVIEW**

The built-in audio communications function of CRC is the primary audio communications tool for use by all controllers working ZDC positions.

2-9-2. CROSS COUPLE

The center covers a large geographic area. Due to the realism built into Audio for VATSIM that uses transmitter location and aircraft position/altitude it is necessary for center controllers to utilize multiple transmitter sites. This functionality is accomplished through "cross couple" or "XC." Using cross couple allows all aircraft on the frequency, regardless of location, to hear other aircraft also on the frequency and prevents aircraft from "talking over" each other.

2-9-3. MULTIPLE FREQUENCY USAGE

Controllers will normally only utilize one frequency. When a position is known to be opening soon controllers may proactively begin utilizing the frequency and moving aircraft to the new frequency so that when the deconsolidated position is opened aircraft will be on the proper frequency and the controller may deselect the frequency. This will improve operational efficiency and ease the opening of a position.

EXAMPLE -

PCT will open soon, ZDC will simultaneously broadcast on both ZDC and PCT frequency. Aircraft that will be on PCT will be switched to the PCT frequency.

PHRASEOLOGY -

(Identification) CHANGE TO MY FREQUENCY (state frequency).

2-9-4. VIRTUAL VOICE SWITCHING AND COMMUNICATIONS SYSTEM (VSCS)

- **a.** Virtual Voice Switching and Communications System (vVSCS or VSCS) emulates real world enroute landline communications. This tool is still in development; however, the following line configuration standards should be followed by all enroute controllers choosing to utilize VSCS.
 - **b.** Enroute Line Designations.

NOTE -

At this time include the leading zero where applicable.

- 1. ZTL: Line 021 (shout).
- 2. ZNY: Line 065 (shout).
- 3. ZJX: Line 095 (shout).
- 4. ZBW: Line 221 (shout).
- 5. ZID: Line 039 (shout).
- 6. ZOB: Line 775 (shout).

QRG	G ZDC vZDC-ZDC-P-01I 12/1							12/18/25	
CRC	Team	ERAM	AIT	Coord	EDST	TDLS	ATIS	vcs	IDS

c. Terminal Line Designations.

1. PCT-MTV: Line 458 (shout).

2. PCT-SHD: Line 430 (shout).

3. PCT-CHP: Line 058 (shout).

4. PCT-JRV: Line 475 (shout).

5. RDU: Line 236 (shout).

6. ROA: Line 876 (shout).

7. ORF: Line 005 (shout).

8. ILM: Line 861 (shout).

9. FAY: Line 571 (shout).

d. Override. Override positions for intrafacility communication. "R" followed by the sector number will be used (i.e. R32, R12, R19). If a d-side position is staffed, the d-side will use "D" followed by the sector number (i.e. D32, D19). Overrides will only be selectable when another controller has that position loaded in VSCS.

QRG ZDC vZDC-P-01I 12/18/25							12/18/25		
CRC	Team	ERAM	AIT	Coord	EDST	TDLS	ATIS	vcs	IDS

Section 10. Information Display System

2-10-1. OVERVIEW

Information Display System (IDS) is a central repository of dynamic information (i.e. weather, flow, traffic management restrictions, etc.) and quick reference to publications. The vZDC IDS is tailored for each facility type. Enroute controllers will utilize the ERIDS (En Route Information Display System). IDS is accessed via https://ids.vzdc.org.

2-10-2. MANAGING AIRPORT FLOW STATUS

Controllers will ensure that landing direction for airports with direction specific descend via procedures have an updated flow direction indicated in IDS. When an underlying facility is staffed, the lowest staffed position is responsible for updating an airport's IDS status.

NOTE -

Runway configuration data for an airport with an active vATIS profile provided by vZDC will automatically update.

2-10-3. BROADCAST NOTICES

During events, TMU may utilize the Broadcast function (through the CIC menu) to publish traffic management initiatives to controllers. These messages may include miles-in-trail requirements, ground stops, and other flow programs. Controllers must monitor IDS while working any control position.

2-10-4. EXTERNAL LANDING DIRECTION

CLT landing direction will be recorded in IDS by updating the airport runway condition. To make the runway in use selection, from the IDS "VIEWER CTL" select "ARP/SET" then select KCLT from the "Select Airport" dropdown. In the "Runway NORTH" or "Runway SOUTH" categories, select the approach type as "IN-USE" and then click "Save Flow." This will update the landing direction for the airport in IDS. Only one entry should be selected.

Chapter 3. Deconsolidated Operations

Section 1. Concept of Operations

3-1-1. OVERVIEW

During higher traffic volume periods it is necessary to split the center airspace beyond a single combined position. VATSIM traffic, especially when event driven, generally concentrates to certain markets, notably the DC Metro and New York Metro areas. Since most events can be either considered DC focused or New York focused, two standard consolidation plans are established to use as a template for consistent operations and provide a base line from which additional deconsolidation can be made from.

3-1-2. PRIMARY MODIFIED CONSOLIDATION STRATEGY

For events where traffic is expected to require deconsolidation beyond the standard 2-way and 3-way configurations, the process for creating the specific sectorization plan should include the standard configurations as the starting point. Conceptually, the 2-way or 3-way configuration described in this order is used as the starting point and then sector(s) are deconsolidated from the standard configuration. As an example, a configuration plan may be described "Standard 2-way with Blackstone (ZDC20) split." This approach allows for better understanding of what is split, who is working what airspace, and is intended to be a manageable approach to arranging airspace to fit event needs while keeping basic sectorization commonality where possible.

3-1-3. HOW TO USE RESTRICTION TABLES

The restrictions given tables in this chapter for 2-way and 3-way standardized deconsolidation plans are filtered tables. These tables include restrictions applicable for internal traffic management. Use of the exit restrictions tables found in Chapter 5 of this section must be used for application of restrictions for aircraft leaving ZDC airspace. The abbreviated tables in this chapter also only include restrictions applicable to the "core" airports served by ZDC. Controllers must reference the individual sector restrictions tables and exit restriction charts when guidance is not provided in this abbreviated chapter.

3-1-4. ASSUMPTION OF DELEGATED APPROACH CONTROL AIRSPACE

Approach control airspace is delegated to the sector that "owns" the airport. Following the VATSIM "top-down" control strategy, the controller will assume the approach control's entire airspace and utilize a secondary STARS position as necessary. The controller that assumes responsibility for the approach control airspace will follow the procedures applicable to that facility and make handoffs and affect coordination as necessary on behalf of the approach control. Reference sector information sections, including 2-way and 3-way consolidation, for sector/TRACON assignment and ownership.

QRG ZDC	vZDC-ZDC-P-01I 12/18/25						
2 Way	2 Way	2 Way	3 Way	3 Way	3 Way	3 Way	
Map	Gordonsville	Brooke	Map	Gordonsville	Brooke	Woodstown	

Section 2. 2-Way Consolidation

3-2-1. SECTORIZATION NARRATIVE

This configuration combines airspace to Gordonsville (ZDC32) and Brooke (ZDC12). The airspace combined to ZDC12 is generally the airspace managing the flows of traffic to the New York and north markets. The airspace combined to ZDC32 is generally managing the sequencing of arrivals to the Washington Metro airports and the departure flows from the Washington Metro and New York Metro airports. In this configuration, Potomac TRACON airspace is delegated to ZDC32 in its entirety when Potomac TRACON, or the unstaffed portions of Potomac TRACON, are closed.

3-2-2. ASSIGNMENT OF AIRSPACE

QRG ZDC vZDC-ZDC-P-01I 12/18/25

CITC ZBC	VZD0-ZD0)-I -O II				12/10/20
2 Way	2 Way	2 Way	3 Way	3 Way	3 Way	3 Way
Мар	Gordonsville	Brooke	Мар	Gordonsville	Brooke	Woodstown

3-2-3. GORDONSVILLE RESTRICTIONS GIVEN (05/20/32/37/52 @ 32)

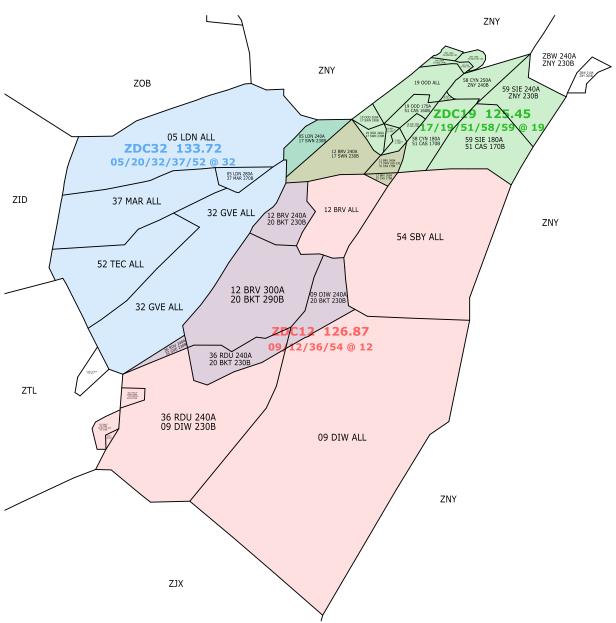
For	Routing	Restriction	То
KPHL	GVE PAATS#	BDRY AOB 290	12

3-2-4. BROOKE RESTRICTIONS GIVEN (09/12/17/19/36/51/54/58/59 @ 12)

For	Routing	Restriction	То
KBWI	[HBUDA/THHMP] RAVNN#	BDRY AOB 250	20
KBWI	[HBUDA/THHMP] RAVNN#	BDRY AOB 290	20
KDCA	WAVES CAPSS#	BDRY AOB 250	20
KDCA	WAVES CAPSS# / IRONS#	BDRY AOB 290	20
KIAD	TRSSK CAVLR#	BDRY AOB 250	20
KIAD	RIC COATT#	AOB 250	20
KIAD	DORRN CAVLR# / FAK COATT# / DORRN WIGOL#	BDRY AOB 290	20
KRIC	NEAVL DUCXS#	BDRY AOB 240	20
RDU+	TAQLE#	AIT: 5409>20	20
RDU+	NALES Q141 HOUKY TAQLE#	BDRY (20 HOUKY)	20
RDU+	NALES Q141 HOUKY TAQLE#	AOB 260	20

3-2-5. ASSUMED TERMINAL AIRSPACE DELEGATION (2-WAY)

Facility	Assigned Sector
ACY	Brooke (12)
DOV	Brooke (12)
FAY	Brooke (12)
GSB	Brooke (12)
ILM	Brooke (12)
NHK	Brooke (12)
NKT	Brooke (12)
NTU	Brooke (12)
ORF	Brooke (12)
PCT	Gordonsville (32)
RDU	Brooke (12)
ROA	Gordonsville (32)


QRG ZDC	vZDC-ZDC	vZDC-ZDC-P-01I 12/18/25					
2 Way	2 Way	2 Way	3 Way	3 Way	3 Way	3 Way	
Map	Gordonsville	Brooke	Map	Gordonsville	Brooke	Woodstown	

Section 3. 3-Way Consolidation

3-3-1. SECTORIZATION NARRATIVE

The 3-way consolidation plan expands upon the 2-way template and splits off the northeast portion of ZDC, combining sectors to Woodstown (ZDC19) to provide management of northeast bound traffic. This configuration is intended as a generalized high traffic center configuration that lends itself to heavy northeast traffic. Modifications from the 2-way to better focus for a specific airport may be more beneficial than this configuration. Potomac departures are blended into the northeast traffic flows by Woodstown.

3-3-2. ASSIGNMENT OF AIRSPACE

QITC LDG	V2D0 2D0	V250 250 1 0 11					
2 Way	2 Way	2 Way	3 Way	3 Way	3 Way	3 Way	
Map	Gordonsville	Brooke	Map	Gordonsville	Brooke	Woodstown	

3-3-3. GORDONSVILLE RESTRICTIONS GIVEN (05/20/32/37/52 @ 32)

For	Routing	Restriction	То
KPHL	GVE PAATS#	BDRY AOB 290	12

3-3-4. BROOKE RESTRICTIONS GIVEN (9/12/36/54 @ 12)

For	Routing	Restriction	То
KBWI	[HBUDA/THHMP] RAVNN#	BDRY AOB 250	20
KBWI	[HBUDA/THHMP] RAVNN#	BDRY AOB 290	20
KDCA	WAVES CAPSS#	BDRY AOB 250	20
KDCA	WAVES CAPSS# / IRONS#	BDRY AOB 290	20
KEWR	PHLBO#	FUBRR AOB 270	19
KIAD	TRSSK CAVLR#	BDRY AOB 250	20
KIAD	RIC COATT#	AOB 250	20
KIAD	DORRN CAVLR# / FAK COATT# / DORRN WIGOL#	BDRY AOB 290	20
KJFK	KALDA Q108 SIE CAMRN#	ACTUP AOB 350	59
KLGA	PROUD#	RIDGY AOB 270	19
KPHL	[GVE/BBDOL] PAATS#	BUKYY AOB 240	17
KPHL	HYTRA PAATS#	BDRY (PRNCZ) AOB 150	51
KPHL	ZJAAY JIIMS#	RADDS AOB 150,	51
KPHL	ZJAAY JIIMS#	BLW PHL-N	51
KRIC	NEAVL DUCXS#	BDRY AOB 240	20
RDU+	TAQLE#	AIT: 5409>20	20
RDU+	NALES Q141 HOUKY TAQLE#	BDRY (20 HOUKY)	20
RDU+	NALES Q141 HOUKY TAQLE#	AOB 260	20

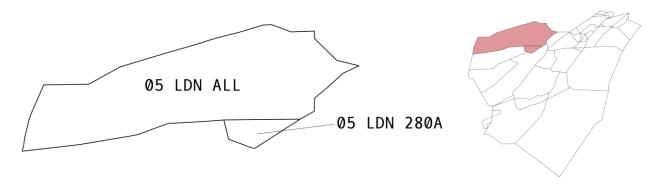
3-3-5. WOODSTOWN RESTRICTIONS GIVEN (17/19/51/58/59 @ 19)

For	Routing	Restriction	То
KRIC	SBY V1 JAMIE	BDRY AOB 260	54
KRIC	ZJAAY ARICE JAMIE	BDRY AOB 260	54
ORF+	TRPOD JAMIE CCV	BDRY AOB 220	54
ORF+	ZJAAY CCV	BDRY AOB 240	54
RDU+	VILLS NALES Q141 HOUKY TAQLE#	NALES AOB 260	12
RDU+	TRPOD TAQLE#	BDRY AOB 320	54
RDU+	ZJAAY TAQLE#	BDRY AOB 320	54

3-3-6. ASSUMED TERMINAL AIRSPACE DELEGATION (3-WAY)

Facility	Assigned Sector
ACY	Woodstown (19)
DOV	Woodstown (19)
FAY	Brooke (12)
GSB	Brooke (12)
ILM	Brooke (12)
NHK	Brooke (12)
NKT	Brooke (12)
NTU	Brooke (12)

QRG	ZDC	vZDC-ZDC	C-P-01I				12/18/25					
2 Wa Map	-	2 Way Gordonsville	2 Way Brooke			3 Way Brooke	3 Way Woodstown					
ORF			Brooke (12)									
PCT			Gordonsville (32)								
RDU		Brooke (12)					Brooke (12)					
ROA			Gordonsville (32)									


Chapter 4. Sector Information

Section 1. Linden (05)

4-1-1. SECTOR NARRATIVE

Linden primarily works southwest bound overflight traffic originating from ZNY and manages DC metro area arrivals (feeding Potomac TRACON).

4-1-2. ASSIGNMENT OF AIRSPACE

4-1-3. SECTOR PROCEDURES (RECEIVED)

For	Routing	Restriction	То
ABE+	COURG SCAPE V377 HAR V162 DUMMR	BDRY AOB 330	5
CKB+	(DIRECT)	BDRY AOB LUFL	5
JST+	(DIRECT)	BDRY AOB 210	5
MDT+	COURG SCAPE V377 HAR	BDRY AOB 330	5
PIT+	Q69 RICCS LEJOY DEMME#	BDRY AOB 240	5
PIT+	IHD NESTO	BDRY AOB 240	5

4-1-4. SECTOR PROCEDURES (GIVEN)

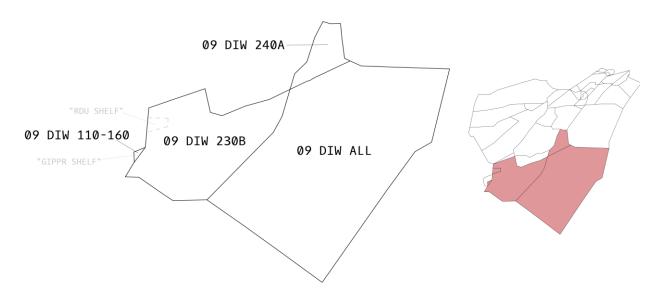
For	Routing	Restriction	То
ABE+	COURG SCAPE V377 HAR V162 DUMMR	DSDG 190	ZNY
CKB+	(DIRECT)	DSDG 110	CKBz
CVG SATS	HNN BRUSH GAVNN CVG	AOB 350	ZID
CYYZ	WOZEE LINNG#	E of ESL	ZOB
CYYZ	OXMAN LINNG#	W of ESL	ZOB
DOV+	LUNDY ARLFT#	BUBBI @ 150	CHP
EWR SATS	GVE JAIKE#	BOOYA AOB 370	12
HTS+	(ANY)	AOB 280	ZID
JST+	(DIRECT)	DSDG 070	JSTz
KBWI	ANTHM#	D/V	CHP
KBWI	EMI#	J: BUBBI @ 150	CHP
KBWI	EMI#	P: BUBBI @ 090	CHP
КСНО	(DIRECT)	BDRY AOB 190	37
KCMH	Q72 HACKS SCRLT SCRLT#	AOB 320	ZID

Linden (05) 47

QRG Z	DC vZE	C-ZDC	C-P-01I								12	/18/25
05 09	12	17	19	20	32	36	37	51	52	54	58	59
					-		•		•			
KCVG			COL	NS GAVN	IN#				AOE	3 350		ZID
KDCA			F	RDMM#					D	/V		MTV
KDCA			N	UMMY#					D	/V		MTV
KDCA			ES	L TIKEE:	#			BDRY AOB 150				37
KIAD			(SIBBZ#				D/V				SHD
KIAD			ZUMI	BR WIG	OL#			BDRY AOB 270				37
KRIC			МО	L SPIDE	L#				BDRY A	AOB 270		37
KSYR			J2	20/J227					AOE	3 310		ZNY
MDT+		COURG SC		COURG SCAPE V377 HAR			DSDG 150		G 150		ZNY	
PIT+		Q	69 RICCS	S LEJOY	DEMME#			AO	B FL230	DSDG 21	0 (J)	ZOB
PIT+		Q69 RICCS LEJOY DEMME#						AOB FL23			0 (P)	ZOB
RDU+			MEL	N ALDA	N#				BDRY A	AOB 320		32
WRI+			GVE BL	JKYY WA	ALK#				BDRY A	AOB 290	·	12

4-1-5. TERMINAL AIRSPACE ASSUMED

None.


Linden (05) 48

Section 2. Dixon (09)

4-2-1. SECTOR NARRATIVE

Dixon consolidates several real-world sectors and forms the largest sector within vZDC. It encompasses the southern third of ZDC. During JFK focused events, Dixon can serve as the primary spacing sector for JFK arrivals and has ample airspace to get initial spacing accomplished.

4-2-2. ASSIGNMENT OF AIRSPACE

4-2-3. SECTOR PROCEDURES (RECEIVED)

For	Routing	Restriction	From
CAE+	(ANY EXCEPT VIA GSO)	DSDG 240	36
CLT SATS	SBY FKN [ARGAL/LIB] NASCR#	AOB 200	20
CLT SATS	LIB MAJIC#	ABEAM RDU AOB 240	36
CLT SATS	SBY FKN [ARGAL/LIB] NASCR#	AOB 300	54
CLT+ TP	SBY FKN RDU GSO V143 GIZMO	AOB 200	20
CLT+ TP	SBY FKN RDU GSO V143 GIZMO	AOB 300	54
FAY+	(ANY)	DSDG 240	36
GSO+	(DIRECT FROM ARGAL/RDU AREA)	AOB 200	20
GSO+	SBY FKN RDU	AOB 300	54
JQF/RUQ/VUJ	SBY FKN [ARGAL/LIB] NASCR#	AOB 200	20
JQF/RUQ/VUJ	LIB MAJIC#	ABEAM RDU AOB 240	36
JQF/RUQ/VUJ	SBY FKN [ARGAL/LIB] NASCR#	AOB 300	54
KCLT	[COUPN/NUUMN] CHSLY#	PELTS AOB 240	36
KCLT	LIB MAJIC#	ABEAM RDU AOB 240	36
ORF+	Q54 NUTZE DRONE DRONE#	TYI/NUTZE AOB 240	36
ORF+	RDU DRONE#	TYI/NUTZE AOB 240	36
RDU+	[TRPOD / ZJAAY] TAQLE#	BOGPE AOB 240	54
SSC+	(ANY)	DSDG 240	36

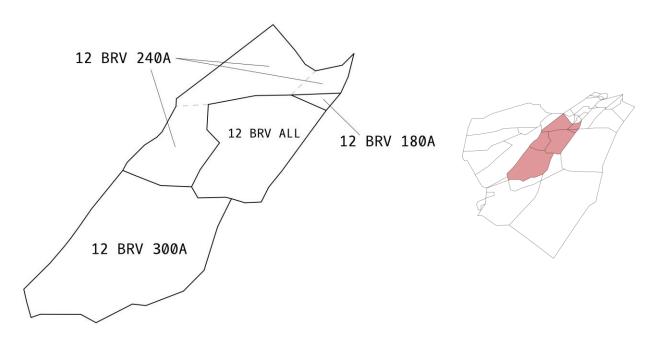
Dixon (09) 49

4-2-4. SECTOR PROCEDURES (GIVEN)

For	Routing	Restriction	То
ACY+	SWL V139 SIE	BDRY AOB 270	54
CAE+	(ANY)	AOB 220	ZJX
CHS+	RAPZZ AMYLU#	AOB 280	ZJX
CLT SATS	SBY FKN [ARGAL/LIB] NASCR#	BDRY AOB 130	GSOz
CLT SATS	LIB MAJIC#	AOB 200	ZTL
CLT SATS	SBY FKN [ARGAL/LIB] NASCR#	FKN AOB 240	20
CLT+ TP	SBY FKN RDU GSO V143 GIZMO	BDRY AOB 130	GSOz
CLT+ TP	SBY FKN RDU GSO V143 GIZMO	FKN AOB 240	20
DOV+	THHMP ARLFT# / PXT V16 ENO	AOB 290	20
DOV+	SBY V29 ENO	BDRY AOB 270	54
FAY+	(ANY)	DSDG 110	FAYz
FLO+	(ANY)	AOB FL230 DSDG 110	ZJX
GSB+	(ANY)	DSDG 110	GSBz
GSO+	CAE BLOCC#	BLOCC @ 110	GSOz
GSO+	(DIRECT FROM ARGAL/RDU AREA)	BDRY AOB 130	GSOz
GSO+	(DIRECT FROM ARGAL/RDU AREA)	FKN AOB 240	20
IAD SATS	LORAA TRSTN#	BDRY AOB 250	20
ILM+	PAACK	DSDG 110	ILMz
JQF/RUQ/VUJ	SBY FKN [ARGAL/LIB] NASCR#	BDRY AOB 130	GSOz
JQF/RUQ/VUJ	LIB MAJIC#	AOB 200	ZTL
JQF/RUQ/VUJ	SBY FKN [ARGAL/LIB] NASCR#	FKN AOB 240	20
KBWI	[HBUDA/THHMP] RAVNN#	BDRY AOB 250	20
KCLT	MLLET2 / RASLN#	AOB 220	ZJX
KCLT	[COUPN/NUUMN] CHSLY#	AOB 220	ZTL
KCLT	LIB MAJIC#	BDRY AOB 220/280K	ZTL
KDCA	WAVES CAPSS#	BDRY AOB 250	20
KHEF/KJYO	LORAA TRSTN#	BDRY AOB 250	20
KIAD	TRSSK CAVLR#	BDRY AOB 250	20
KIAD	RIC COATT#	AOB 250	20
KPHL	ZJAAY JIIMS#	BDRY AOB 290	54
MYR+	PAACK WYLMS	AOB FL230 DSDG 110	ZJX
NKT+	(ANY)	DSDG 110	NKTz
ORF+	DRONE#	DRONE @ 110	ORFz
RDU+	BUZZY#	[NE] BUZZY @ 110/250kt	RDUz
RDU+	BUZZY#	[SW] BUZZY @ 110	RDUz
RDU+	BLOGS# / DMSTR#	D/V	RDUz
RDU+	TAQLE#	AIT: 5409>20	20
SAV/HXD+	MRPIT Q409 SESUE SOOOP	AOB 340	ZJX
SSC+	(ANY)	AOB 220	ZJX
TRI	[ANY]	AOB 260	ZTL
WRI+	ZJAAY WAALK#	BDRY AOB 290	54

4-2-5. TERMINAL AIRSPACE ASSUMED

FAY, GSB, ILM, NKT, RDU.


Dixon (09) 50

Section 3. Brooke (12)

4-3-1. SECTOR NARRATIVE

Brooke is the core sequencing and spacing sector for EWR and LGA streams. PHL via the PAATS-STAR are also spaced for much of the arrival by Brooke. Brooke merges streams from several directions to build the NY metro arrival flows.

4-3-2. ASSIGNMENT OF AIRSPACE

4-3-3. SECTOR PROCEDURES (RECEIVED)

For	Routing	Restriction	From
ACY+	PXT V16 GARED SIE	AOB 210	20
DOV+	MAULS ARLFT#	AOB 210	20
DOV+ [A2]	THHMP ARLFT# / PXT V16 ENO	AOB 210	20
EWR SATS	GVE JAIKE#	BOOYA AOB 370	05
EWR SATS TP	SHLBK MAZIE#	AOB FL210	20
KPHL	GVE PAATS#	BDRY AOB 290	32
PHL S SAT	PXT V16 ENO V29 DQO	AOB 210	20
PHL SATS PN	PXT V16 ENO V29 DQO	AOB 210	20
RDU+	VILLS NALES Q141 HOUKY TAQLE#	NALES AOB 260	58
WRI+	GVE BUKYY WAALK#	BDRY AOB 290	05
WRI+	HYTRA WAALK#	AOB 210	20

4-3-4. SECTOR PROCEDURES (GIVEN)

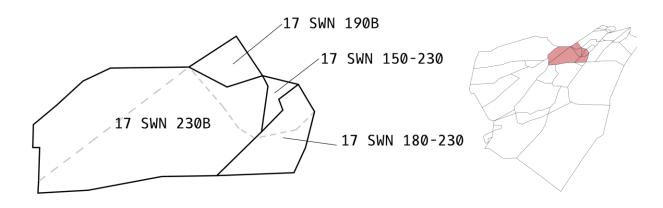
For Routing	Restriction	То
-------------	-------------	----

Brooke (12) 51

QRG ZDC	vZD	C-ZDC	:-P-01I								12	/18/25
05 09	12	17	19	20	32	36	37	51	52	54	58	59
					_				•			
ACY+			FAK OTT	[JAYBO]	SIE				OTT AOB	240		17
ACY+			PXT V16	GARED	SIE			5 5	S GARED	@ 130		51
DOV+		Α	RLFT# / I	PXT V16	ENO			PXT	/GOFER A	AOB 130		JRV
EWR SATS			JΑ	IKE#				SI	WANN AC)B 240		19
EWR SATS TP			SHLBI	K MAZIE	#			L	OUIE AO	B 130		CHP
EWR TP			SHLBK	BRAND)#			L	OUIE AO	B 130		CHP
ISP E		SIE BRIC	S Q439	SARDIT	320 ORC	HA			AOB 23	30		58
ISP N		SIE BRIG	S Q439 S	SARDI R	ICED KEY	/ED			AOB 23	30		58
KEWR			PH	LBO#				F	UBRR AO	B 270		19
KHPN		BEARI	Q22 BES	SSI CYN	BOUNO#	#		DANG	R AOB 29	0, ABV LO	ЭΑ	19
KHPN		GVE Q12	27 ENO E	BESSI CY	/N BOUN	O#	ВІ	BDRY (GRACO) AOB 290, ABV LGA				19
KISP		SIE	BRIGS Q	439 SAR	DICCC			AOB 230				58
KJFK (JRV)	R	IC V16 GA	ARED V2	29 PANZ	ZE V44 C <i>A</i>	AMRN		AOB 170				51
KLGA			PR	OUD#				RIDGY AOB 270				19
KPHL		[(GVE/BBD	OL] PA	ATS#			BUKYY AOB 240				17
KPHL			HYTRA	APAATS	S#			BDRY (PRNCZ) AOB 150				51
KPHL PN		PXT	V16 GAP	ED LEE	AH VCN			PXT AOB 130				JRV
LGA TP			SHLBI	APPLE	#			LOUIE AOB 130				CHP
ORF+			FAGED \	/286 ST	EIN			S	TEIN AO	B 130		ORFz
PHF/LFI/FAF			COL	IN HCM					DSDG 1	30		ORFz
PHL N SAT JET			PA	ATS#				В	UKYY AO	B 240		17
PHL S SAT		P.	XT V16 E	NO V29	DQO			BDRY	(5 GARED	D) AOB 13	30	51
PHL SATS PN		P.	XT V16 E	NO V29	DQO			PXT	/GOFER A	AOB 130		JRV
RDU+		NALES Q141 HOUKY TAQLE#				BDRY (20 HOUKY)				20		
RDU+		NAL	ES Q141	HOUKY	TAQLE#				AOB 26	60		20
WRI+			BUKYY	'WAALK	(#			BUKYY AOB 240				17
WRI+			HYTRA	WAALK	(#		BDRY (5 GARED)					51
WRI+			HYTRA	WAALK	(#				AOB 13	30		51

4-3-5. TERMINAL AIRSPACE ASSUMED

NHK.


Brooke (12) 52

Section 4. Swann (17)

4-4-1. SECTOR NARRATIVE

Swann is a small sector that manages the departure for northeast bound DC Metro area departures at low altitude. Swann coordinates with adjacent sectors to blend its departure flows into the NY metro arrival streams overhead.

4-4-2. ASSIGNMENT OF AIRSPACE

4-4-3. SECTOR PROCEDURES (RECEIVED)

For	Routing	Restriction	From
ACY+	FAK OTT [JAYBO] SIE	OTT AOB 240	12
KPHL	[GVE/BBDOL] PAATS#	BUKYY AOB 240	12
PHL N SAT JET	PAATS#	BUKYY AOB 240	12
WRI+	BUKYY WAALK#	BUKYY AOB 240	12

4-4-4. SECTOR PROCEDURES (GIVEN)

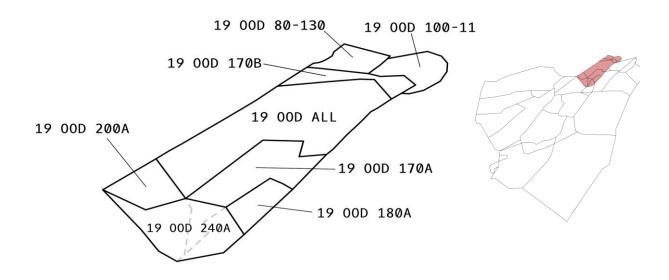
For	Routing	Restriction	То
ACY+	FAK OTT [JAYBO] SIE	BDRY (JAYBO) AOB 150	51
JFK/FRG PN/TP	AGARD DONIL V44 PANZE V184 ZIGGI	CAP AOB 170	51
KCHO	Q75 GVE	AOB 220	MTV
KHPN (PCT)	AGARD V44 SIE V139 RICED RICED#	CAP AOB 230	58
KJFK (PCT)	AGARD V44 DONIL V229 PANZE V44 CAMRN	BDRY AOB 170	51
KPHL	PAATS#	JAYBO AOB 150	51
PHL N SAT JET	PAATS#	JAYBO AOB 170,	51
PHL N SAT JET	PAATS#	ABV PHL/ACY	51
PHL N SAT TP	PXT V16 ENO V29 DQO	BDRY (5 GARED)	51
PHL N SAT TP	PXT V16 ENO V29 DQO	AOB 170,	51
PHL N SAT TP	PXT V16 ENO V29 DQO	BLW PHL_N_JET,	51
PHL N SAT TP	PXT V16 ENO V29 DQO	ABV PHL	51
WRI+	WAALK#	JAYBO AOB 150	51

Swann (17) 53

QRG	ZDC	vZD	C-ZDC	C-P-01I								12/	18/25
05	09	12	17	19	20	32	36	37	51	52	54	58	59

4-4-5. TERMINAL AIRSPACE ASSUMED

None.

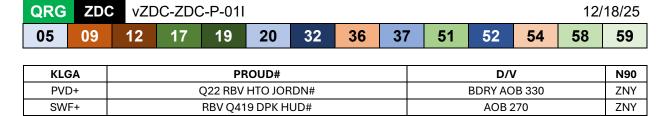

Swann (17) 54

Section 5. Woodstown (19)

4-5-1. SECTOR NARRATIVE

Woodstown traffic flows in a single direction. Feeding LGA and HPN traffic while climbing DC Metro departure traffic. Most routes in the sector are procedurally protected assuming on route and no deviations. Woodstown is built to accommodate holding of LGA arrivals as necessary without have an extreme adverse impact on the sector operations.

4-5-2. ASSIGNMENT OF AIRSPACE


4-5-3. SECTOR PROCEDURES (RECEIVED)

For	Routing	Restriction	From
EWR SATS	JAIKE#	SWANN AOB 240	12
KEWR	PHLBO#	FUBRR AOB 270	12
KHPN	BEARI Q22 BESSI CYN BOUNO#	DANGR AOB 290, ABV LGA	12
KHPN	GVE Q127 ENO BESSI CYN BOUNO#	BDRY (GRACO) AOB 290, ABV LGA	12
KLGA	PROUD#	RIDGY AOB 270	12

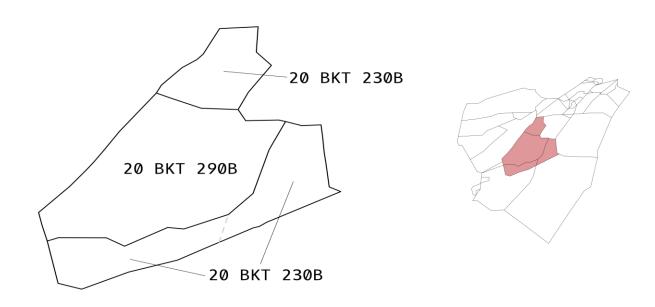
4-5-4. SECTOR PROCEDURES (GIVEN)

For	Routing	Restriction	То
ACY+	DQO ENO SIE	BDRY AOB 150	51
ALB+	Q22 RBV LGA TRUDE V487 CANAN	AOB 350	ZNY
BDL+	RBV Q419 DPK DPK#	RBV AOB 270	ZNY
BOS N SATS	RBV Q419 DPK MAD HFD DREEM#	BDRY AOB 310	ZNY
EWR SATS	JAIKE#	JAIKE @ 130	PHLz
KBOS	RBV Q419 JFK ROBUC#	BDRY AOB 370	ZNY
KEWR	PHLBO#	D/V	N90
KHPN	BESSI CYN BOUNO#	BDRY (BESSI) @ 230	ZNY

Woodstown (19) 55

4-5-5. TERMINAL AIRSPACE ASSUMED

None.


Woodstown (19) 56

Section 6. Blackstone (20)

4-6-1. SECTOR NARRATIVE

Blackstone manages the southern arrival streams into the DC Metro airports as well as Raleigh arrivals from the northeast and Norfolk arrivals from the northwest. Blackstone manages the DC arrival flows under the NY/PHL streams that are managed primarily by Brooke above.

4-6-2. ASSIGNMENT OF AIRSPACE

4-6-3. SECTOR PROCEDURES (RECEIVED)

For	Routing	Restriction	From
ACY+	PXT V16 GARED SIE	AOB 290	36
CLT SATS	SBY FKN [ARGAL/LIB] NASCR#	FKN AOB 240	09
CLT+ TP	SBY FKN RDU GSO V143 GIZMO	FKN AOB 240	09
DOV+	THHMP ARLFT# / PXT V16 ENO	AOB 290	09
DOV+	MAULS ARLFT#	STPBY AOB 230	32
DOV+	THHMP ARLFT# / PXT V16 ENO	AOB 290	36
EWR SATS TP	SHLBK MAZIE#	AOB FL290	36
GSO+	(DIRECT FROM ARGAL/RDU AREA)	FKN AOB 240	09
IAD SATS	LORAA TRSTN#	BDRY AOB 250	09
IAD SATS	[ZTL] LORAA TRSTN#	BDRY (LOOEY)	32
JQF/RUQ/VUJ	SBY FKN [ARGAL/LIB] NASCR#	FKN AOB 240	09
KADW	VUDOO#	BDRY AOB 290	36
KBWI	[HBUDA/THHMP] RAVNN#	BDRY AOB 250	09
KBWI	[HBUDA/THHMP] RAVNN#	BDRY AOB 290	36
KDCA	WAVES CAPSS#	BDRY AOB 250	09
KDCA	WAVES CAPSS# / IRONS#	BDRY AOB 290	36
KHEF/KJYO	LORAA TRSTN#	BDRY AOB 250	09

Blackstone (20) 57

KHEF/KJYO	[ZTL] LORAA TRSTN#	AOB 290	32
KIAD	TRSSK CAVLR#	BDRY AOB 250	09
KIAD	RIC COATT#	AOB 250	09
KIAD	DORRN CAVLR# / FAK COATT#	BDRY AOB 270	32
KIAD	DORRN CAVLR# / FAK COATT# / DORRN WIGOL#	BDRY AOB 290	36
KRIC	Q60 JAXSN KELCE DUCXS#	BDRY (LOOEY) AOB 230	32
KRIC	NEAVL DUCXS#	BDRY AOB 240	36
ORF+	TERKS#	BDRY AOB 210	32
PHL S SAT	PXT V16 ENO V29 DQO	AOB 290	36
RDU+	TAQLE#	AIT: 5409>20	09
RDU+	NALES Q141 HOUKY TAQLE#	BDRY (20 HOUKY)	12
RDU+	NALES Q141 HOUKY TAQLE#	AOB 260	12
WRI+	HYTRA WAALK#	AOB 290	36

4-6-4. SECTOR PROCEDURES (GIVEN)

For	Routing	Restriction	То
ACY+	PXT V16 GARED SIE	AOB 210	12
CLT SATS	SBY FKN [ARGAL/LIB] NASCR#	AOB 200	9
CLT+ TP	SBY FKN RDU GSO V143 GIZMO	AOB 200	9
DOV+	MAULS ARLFT#	AOB 210	12
DOV+ [A2]	THHMP ARLFT# / PXT V16 ENO	AOB 210	12
EWR SATS TP	SHLBK MAZIE#	AOB FL210	12
GSO+	(DIRECT FROM ARGAL/RDU AREA)	AOB 200	9
IAD SATS	TRSTN#	JOHOF @ 130	JRV
JQF/RUQ/VUJ	SBY FKN [ARGAL/LIB] NASCR#	AOB 200	9
KADW	VUDOO#	GOLOE @ 130	JRV
KBWI	RAVNN#	D/V	MTV
KDCA	CAPSS#	D/V	MTV
KDCA	IRONS#	PEGBY @ 130	MTV
KHEF/KJYO	TRSTN#	JOHOF @ 130	JRV
KIAD	CAVLR#	D/V	SHD
KIAD	COATT#	OGATE @ 130	SHD
KIAD	DORRN WIGOL#	05 BDRY AOB LUFL	32
KRIC	KELCE DUCXS#	KELCE @ 110	JRV
KRIC	NEAVL DUCXS#	NEAVL @ 110	JRV
ORF+	TERKS#	TERKS @ 140	ORFz
PHL S SAT	PXT V16 ENO V29 DQO	AOB 210	12
PHL SATS PN	PXT V16 ENO V29 DQO	AOB 210	12
RDU+	TAQLE#	D/V	RDUz
WRI+	HYTRA WAALK#	AOB 210	12

4-6-5. TERMINAL AIRSPACE ASSUMED

None.


Blackstone (20) 58

Section 7. Gordonsville (32)

4-7-1. SECTOR NARRATIVE

Gordonsville works arrivals to Charlette, Raleigh, and a significant amount of overflight traffic southwest bound on Q75 and northeast bound via Q22 and Q60.

4-7-2. ASSIGNMENT OF AIRSPACE

4-7-3. SECTOR PROCEDURES (RECEIVED)

For	Routing	Restriction	From
DOV+	MAULS ARLFT#	BDRY AOB 310	52
GSO+	ROA HENBY#	HENBY @ 110	52
KIAD	DORRN WIGOL#	05 BDRY AOB LUFL	20
KIAD	ZUMBR WIGOL#	BDRY AOB 190	37
KIAD	CCHIP WIGOL#	BDRY (JUDGG) @ 130	52
KRIC	LYH POWTN#	BDRY AOB 250	52
KRIC	MOL SPIDR#	BDRY AOB 210	52
ORF+	TERKS#	BDRY AOB 270	52
RDU+	MELTN ALDAN#	BDRY AOB 320	05
RDU+	[KPASS / TIVAE] ALDAN#	BDRY AOB 250	52

4-7-4. SECTOR PROCEDURES (GIVEN)

For	Routing	Restriction	То
AVL	[N of GSO]	AOB 340	ZTL
CAE+	GVE Q75 GSO	AOB 300	ZTL
CLT SATS	GVE LYH NASCR#	HENBY @ 120	GSOz
DOV+	MAULS ARLFT#	STPBY AOB 230	20
GSO+	HENBY#	HENBY @ 110	GSOz
GSP+	FUBLL JUNNR#	BDRY AOB 280	ZTL
HKY/UKF/SVH	[ANY]	AOB 200 DSDG 170	ZTL
IAD SATS	[ZTL] LORAA TRSTN#	BDRY (LOOEY)	20

Gordonsville (32) 59

QRG	ZDC	vZD	C-ZDC	:-P-01I								12/	18/25
05	09	12	17	19	20	32	36	37	51	52	54	58	59

JQF/RUQ/VUJ	GVE LYH NASCR#	HENBY @ 120	GSOz
KCLT	AIROW CHSLY#	D/V	ZTL
KCLT	LYH MAJIC#	BDRY AOB 220/280K	ZTL
KHEF/KJYO	[ZTL] LORAA TRSTN#	AOB 290	20
KIAD	WIGOL#	JOANZ @ 130	JRV
KIAD	DORRN CAVLR# / FAK COATT#	BDRY AOB 270	20
KPHL	GVE PAATS#	BDRY AOB 290	12
KRIC	LYH POWTN# / MOL SPIDR#	D/V	JRV
KRIC	Q60 JAXSN KELCE DUCXS#	BDRY (LOOEY) AOB 230	20
ORF+	TERKS#	BDRY AOB 210	20
RDU+	ALDAN#	D/V	RDUz
TRI	[ANY]	AOB 260	ZTL
TYS	[N of GSO]	AOB 360	ZTL

4-7-5. TERMINAL AIRSPACE ASSUMED

PCT.

Gordonsville (32)

Section 8. Raleigh (36)

4-8-1. SECTOR NARRATIVE

Raleigh is the primary sequencing sector for DC Metro arrivals which are fed to Blackstone. Raleigh also blends Charolette departures climbing northeast bound into the traffic flows inbound from ZJX and ZTL.

4-8-2. ASSIGNMENT OF AIRSPACE

4-8-3. SECTOR PROCEDURES (RECEIVED)

None.

4-8-4. SECTOR PROCEDURES (GIVEN)

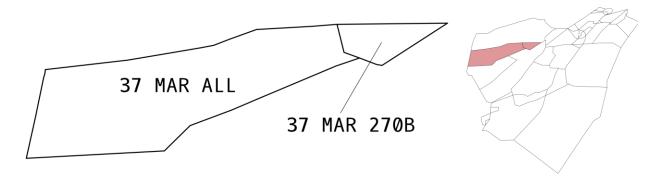
For	Routing	Restriction	То
ACY+	PXT V16 GARED SIE	AOB 290	20
CAE+	(ANY EXCEPT VIA GSO)	DSDG 240	9
CHS+	MRPIT AMYLU#	AOB 280	ZJX
CLT SATS	LIB MAJIC#	ABEAM RDU AOB 240	9
DOV+	THHMP ARLFT# / PXT V16 ENO	AOB 290	20
EWR SATS TP	SHLBK MAZIE#	AOB FL290	20
FAY+	(ANY)	DSDG 240	9
JQF/RUQ/VUJ	LIB MAJIC#	ABEAM RDU AOB 240	9
KADW	VUDOO#	BDRY AOB 290	20
KBWI	[HBUDA/THHMP] RAVNN#	BDRY AOB 290	20
KCLT	[COUPN/NUUMN] CHSLY#	PELTS AOB 240	9
KCLT	LIB MAJIC#	ABEAM RDU AOB 240	9
KDCA	WAVES CAPSS# / IRONS#	BDRY AOB 290	20
KIAD	DORRN CAVLR# / FAK COATT# / DORRN WIGOL#	BDRY AOB 290	20
KRIC	NEAVL DUCXS#	BDRY AOB 240	20
ORF+	Q54 NUTZE DRONE DRONE#	TYI/NUTZE AOB 240	9

Raleigh (36)

ORF+	RDU DRONE#	TYI/NUTZE AOB 240	9
PHL S SAT	PXT V16 ENO V29 DQO	AOB 290	20
SSC+	(ANY)	DSDG 240	9
WRI+	HYTRA WAALK#	AOB 290	20

4-8-5. TERMINAL AIRSPACE ASSUMED

None.


Raleigh (36)

Section 9. Marlinton (37)

4-9-1. SECTOR NARRATIVE

Marlinton's dominant flow is arrivals to the DC Metro airports from the west. Specifically, Marlinton works Dulles, Washington National, and Baltimore arrivals. The sector sees minimal overflight traffic.

4-9-2. ASSIGNMENT OF AIRSPACE

4-9-3. SECTOR PROCEDURES (RECEIVED)

For	Routing	Restriction	From
KCHO	(DIRECT)	BDRY AOB 190	05
KDCA	ESL TIKEE#	BDRY AOB 150	05
KIAD	ZUMBR WIGOL#	BDRY AOB 270	05
KRIC	MOL SPIDR#	BDRY AOB 270	05

4-9-4. SECTOR PROCEDURES (GIVEN)

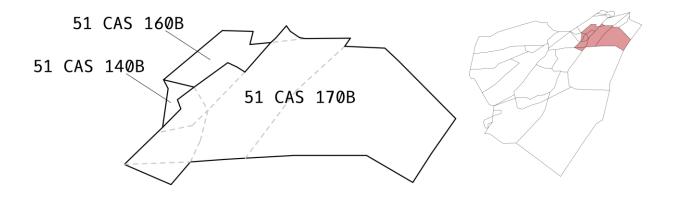
For	Routing	Restriction	То
ABE+	COURG SCAPE V377 HAR V162 DUMMR	BDRY AOB 330	5
CKB+	(DIRECT)	BDRY AOB LUFL	5
CRW+	(DIRECT)	AOB 230 DSDG 110	ZID
GSO+	ROA HENBY#	BDRY AOB 260	52
JST+	(DIRECT)	BDRY AOB 210	5
KBWI	RAVNN#	D/V	MTV
KCHO	(DIRECT)	DSDG 110 OR LOWER	JRV
KDCA	TRUPS#	D/V	MTV
KDCA	TIKEE#	LLBEE @ 90	SHD
KIAD	DOCCS#	DOCCS @ 110/250K	SHD
KIAD	GIBBZ#	D/V	SHD
KIAD	ZUMBR WIGOL#	BDRY AOB 190	32
KRIC	[ZID] MOL SPIDR#	BDRY AOB 210	52
KRIC	[ZOB] MOL SPIDR#	BDRY AOB 210	52
MDT+	COURG SCAPE V377 HAR	BDRY AOB 330	5
ORF+	TERKS#	BDRY AOB 270	52
PIT+	Q69 RICCS LEJOY DEMME#	BDRY AOB 240	5

Marlinton (37)

QRG	ZDC	vZDC-ZDC-P-01I 12/18							18/25				
05	09	12	17	19	20	32	36	37	51	52	54	58	59
PIT	+			II.	HD NEST	ΓΟ				BDRY	AOB 240		5

4-9-5. TERMINAL AIRSPACE ASSUMED

None.


Marlinton (37)

Section 10. Casino (51)

4-10-1. SECTOR NARRATIVE

Casino works Philadelphia arrivals, southbound departures from Philadelphia, and some DC Metro area arrivals from the east. All DC Metro to New York's Kennedy airport are managed by Casino. The sector is geographically compressed with a high volume of crossing traffic with multiple streams of traffic being spaced into single flows.

4-10-2. ASSIGNMENT OF AIRSPACE

4-10-3. SECTOR PROCEDURES (RECEIVED)

For	Routing	Restriction	From
ACY+	PXT V16 GARED SIE	5 S GARED @ 130	12
ACY+	FAK OTT [JAYBO] SIE	BDRY (JAYBO) AOB 150	17
ACY+	DQO ENO SIE	BDRY AOB 150	19
ACY+	SWL V139 SIE	RADDS AOB 110	54
DOV+	SBY V29 ENO	BDRY (5 LAFLN)	54
DOV+	SBY V29 ENO	AOB 110	54
EWR SATS TP	SBY V29 DQO FROSE V3 SBJ	EZIZI AOB 150	54
EWR TP	SBY V29 DQO V479 RUUTH	EZIZI AOB 150	54
JFK/FRG PN/TP	AGARD DONIL V44 PANZE V184 ZIGGI	CAP AOB 170	17
JFK/FRG PN/TP [S]	SWL V139 SIE V44 PANZE V184 ZIGGI	BDRY AOB 170	54
KADW	Q167 ZIZZI KNUKK ATR LAFLN SPISY#	ZIZZI @ LUFL	59
KBWI	ZIZZI KNUKK ATR LAFLN MIIDY#	ZIZZI @ LUFL	59
KDCA	ZIZZI KNUKK ATR LAFLN DEALE#	ZIZZI @ LUFL	59
KIAD	ZIZZI ENO T358 OBWON T356 WOOLY MRB	ZIZZI @ LUFL	59
KJFK (JRV)	RIC V16 GARED V229 PANZE V44 CAMRN	AOB 170	12
KJFK (PCT)	AGARD V44 DONIL V229 PANZE V44 CAMRN	BDRY AOB 170	17
KPHL	HYTRA PAATS#	BDRY (PRNCZ) AOB 150	12
KPHL	PAATS#	JAYBO AOB 150	17
KPHL	ZJAAY JIIMS#	RADDS AOB 150,	54
KPHL	ZJAAY JIIMS#	BLW PHL-N	54
KPHL PN	SWL VCN#	RADDS AOB 110	54

Casino (51) 65

LGA PN	SBY V29 DQO V479 RUUTH V123 PROUD	BDRY AOB 110	54
N90 PN O/F	LEEAH V1 HFD	BDRY AOB 110	54
PHL N SAT JET	PAATS#	JAYBO AOB 170,	17
PHL N SAT JET	PAATS#	ABV PHL/ACY	17
PHL N SAT JET	ZJAAY JIIMS#	RADDS AOB 150,	54
PHL N SAT TP	PXT V16 ENO V29 DQO	BDRY (5 GARED)	17
PHL N SAT TP	PXT V16 ENO V29 DQO	AOB 170,	17
PHL N SAT TP	PXT V16 ENO V29 DQO	BLW PHL_N_JET,	17
PHL N SAT TP	PXT V16 ENO V29 DQO	ABV PHL	17
PHL N SAT TP	SWL VCN#	RADDS AOB 110	54
PHL PN O/F	ENO V29 ETX	BDRY (5 LAFLN)	54
PHL PN O/F	ENO V29 ETX	AOB 110	54
PHL S SAT	PXT V16 ENO V29 DQO	BDRY (5 GARED) AOB 130	12
PHL SATS PN	SWL VCN#	RADDS AOB 110	54
PHL TP O/F	ENO V29 ETX	BDRY (5 LAFLN)	54
PHL TP O/F	ENO V29 ETX	AOB 150	54
SWF+ [170-]	SWL V139 BRIGS T320 SARDI RICED MAD BRISS PWL TRESA	BDRY AOB 170	54
WRI+	HYTRA WAALK#	BDRY (5 GARED)	12
WRI+	HYTRA WAALK#	AOB 130	12
WRI+	WAALK#	JAYBO AOB 150	17
WRI+	ZJAAY WAALK# / SIE ANABL V1 CYN	RADDS AOB 110	54

4-10-4. SECTOR PROCEDURES (GIVEN)

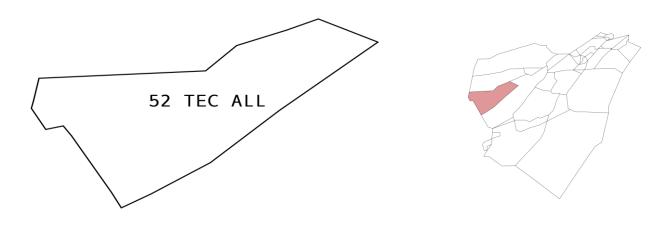
For	Routing	Restriction	То
ACY+	(ANY)	DSDG 80	ACYz
ACY+	SIE	SIE AOB 80	ACYz
DOV+	(ANY)	DSDG 80	DOVz
EWR SATS TP	SBY V29 DQO FROSE V3 SBJ	BLARE @ 110	PHLz
EWR TP	SBY V29 DQO V479 RUUTH	BLARE @ 110	PHLz
JFK/FRG PN/TP	PANZE V184 ZIGGI	BDRY AOB 150	ZNY
KADW	LAFLN SPISY#	BILIT @ 110/250K	CHP
KBWI	MIIDY#	CHOPS @ 110/250K	CHP
KDCA	DEALE#	BILIT @ 110	CHP
KIAD	ENO T358 OBWON T356 WOOLY MRB	ENO AOB 80	CHP
KJFK	PANZE V44 CAMRN	BDRY AOB 170	ZNY
KJFK	PANZE V44 CAMRN [ZNY CLS/N90 OPEN]	CAMRN @ 110/250K	N90
KPHL	BRIGS JIIMS#	IROKT @ 90	PHLz
KPHL	[DASHA/ZJAAY] JIIMS#	HEKMN @ 90	PHLz
KPHL	PAATS#	ESSSO @ 100/250	PHLz
KPHL PN	SWL VCN#	SIE AOB 80	ACYz
KPHL PN	SWL V139 SIE VCN OOD	SIE AOB 80	ACYz
LGA PN	SBY V29 DQO V479 RUUTH V123 PROUD	DSDG 80	DOVz
N90 PN O/F	LEEAH V1 HFD	DSDG 80	ACYz
PHL N SAT JET	JIIMS#	JIIMS @ 100 (NO SPD)	PHLz
PHL N SAT JET	PAATS#	ESSSO @ 120 (NO SPD)	PHLz
PHL N SAT TP	SWL VCN#	SIE AOB 80	ACYz
PHL N SAT TP	PXT V16 ENO V29 DQO	BLARE @ 110	PHLz
PHL PN O/F	ENO V29 ETX	ENO @ 90	PHLz
PHL S SAT	PXT V16 ENO V29 DQO	DSDG 80	DOVz

Casino (51) 66

QRG	ZDC	vZD	vZDC-ZDC-P-01I 12/1									/18/25	
05	09	12	17	19	20	32	36	37	51	52	54	58	59
PHL S	SATS PN				SWL VC	N#				SIEA	AOB 80		ACYz
PHL S	SATS PN			SWL \	/139 SIE	VCN OO	D			SIE A	AOB 80		ACYz
PHL	TP O/F				ENO V29	ETX				BLARI	E @ 110		PHLz
S	NF+	Е	BRIGS T32	20 SARD	RICED	1AD BRIS	S PWL T	RESA		BRIGS	AOB 170		ZNY
V	/RI+		WAALK#						WAALI	CAOB 80		ACYz	
V	/RI+		ZJAAY WAALK# WAALK @ 80							ACYz			
١٨	/RI+			SIF	ΔΝΔΒΙ \	V1 CVN				SIF	<u>ത</u> ജവ		ACV ₇

4-10-5. TERMINAL AIRSPACE ASSUMED

ACY, DOV.


Casino (51) 67

Section 11. Tech (52)

4-11-1. SECTOR NARRATIVE

Tech's primary traffic workload comes from Atlanta arrivals and spacing. Additionally, a large number of overflights transitioning from ZTL and ZID through ZDC will pass through Tech.

4-11-2. ASSIGNMENT OF AIRSPACE

4-11-3. SECTOR PROCEDURES (RECEIVED)

For	Routing	Restriction	From
GSO+	ROA HENBY#	BDRY AOB 260	37
KRIC	[ZID] MOL SPIDR#	BDRY AOB 210	37
KRIC	[ZOB] MOL SPIDR#	BDRY AOB 210	37
ORF+	TERKS#	BDRY AOB 270	37

4-11-4. SECTOR PROCEDURES (GIVEN)

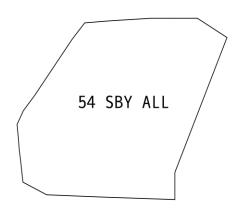
For	Routing	Restriction	То
AVL	[N of GSO]	AOB 340	ZTL
DOV+	MAULS ARLFT#	BDRY AOB 310	32
GSO+	ROA HENBY#	HENBY @ 110	32
HKY/UKF/SVH	[ANY]	AOB 200 DSDG 170	ZTL
HKY/UKF/SVH	[ANY]	AOB 200 DSDG 170	ZTL
KIAD	CCHIP WIGOL#	BDRY (JUDGG) @ 130	32
KLYH	(ANY)	DSDG 110	ROAz
KRIC	LYH POWTN#	BDRY AOB 250	32
KRIC	MOL SPIDR#	BDRY AOB 210	32
ORF+	TERKS#	BDRY AOB 270	32
RDU+	[KPASS / TIVAE] ALDAN#	BDRY AOB 250	32
ROA+	(ANY)	DSDG 110	ROAz
TRI	[ANY]	AOB 260	ZTL
TYS	[N of GSO]	AOB 360	ZTL

Tech (52) 68

QRG	ZDC	vZD	C-ZDC	C-P-01I								12/	18/25
05	09	12	17	19	20	32	36	37	51	52	54	58	59

4-11-5. TERMINAL AIRSPACE ASSUMED

ROA.


Tech (52) 69

Section 12. Salisbury (54)

4-12-1. SECTOR NARRATIVE

Salisbury sequences and spaces New York and Boston area arrivals for Coyle and Sea Isle while blending Philadelphia and Atlantic City departures into the southbound flows from the New York metro areas.

4-12-2. ASSIGNMENT OF AIRSPACE

4-12-3. SECTOR PROCEDURES (RECEIVED)

For	Routing	Restriction	From
ACY+	SWL V139 SIE	BDRY AOB 270	09
DOV+	SBY V29 ENO	BDRY AOB 270	09
KPHL	ZJAAY JIIMS#	BDRY AOB 290	09
KRIC	SBY V1 JAMIE	BDRY AOB 260	58
KRIC	ZJAAY ARICE JAMIE	BDRY AOB 260	59
ORF+	TRPOD JAMIE CCV	BDRY AOB 220	58
ORF+	ZJAAY CCV	BDRY AOB 240	59
RDU+	TRPOD TAQLE#	BDRY AOB 320	58
RDU+	ZJAAY TAQLE#	BDRY AOB 320	59
WRI+	ZJAAY WAALK#	BDRY AOB 290	09

4-12-4. SECTOR PROCEDURES (GIVEN)

For	Routing	Restriction	То
ACY+	SWL V139 SIE	RADDS AOB 110	51
ALB+	JAMIE CONFR Q133 LLUND TRUDE V487 CANAN	(AT ALTITUDE)	58
ALB+	SWL V139 SARDI V91 BDR V487 CANAN	RADDS AOB 370, ABV JFK, BLW HPN	59
BDL+	KALDA Q97 DLAAY RADDS Q439 SARDI DPK#	RADDS AOB 370	59
BOS N SATS	KALDA Q97 DLAAY RADDS Q445 BRIGS Q439 SARDI T320 GON ORW WOONS#	RADDS AOB 370	59
BOS S SATS	KALDA Q97 DLAAY RADDS Q439 SARDI T320 GON ORW V16 WOONS	RADDS AOB 370	59

Salisbury (54)

12/18/25

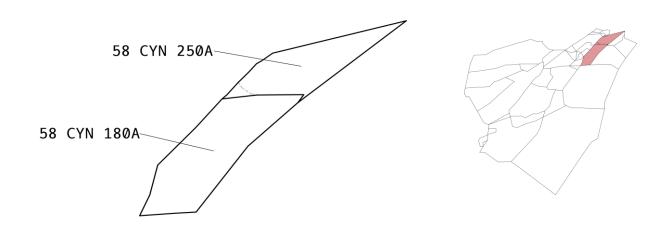
4-12-5. TERMINAL AIRSPACE ASSUMED

NTU, ORF.

QRG

ZDC

vZDC-ZDC-P-01I

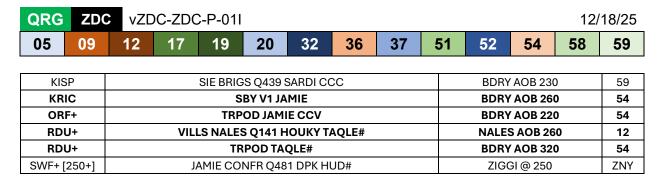

Salisbury (54)

Section 13. Coyle (58)

4-13-1. SECTOR NARRATIVE

Coyle's dominant flow is southbound departures from the New York metro area into which Philadelphia departures climb to blend near the southern end of the sector. Northbound traffic includes Boston and other New England area arrivals, many of which have descending restrictions into ZNY. Coyle must maintain awareness of Boston traffic through Woodstown sector as the streams converge over Kennedy-VOR and will likely require spacing or "as one" spacing to ZNY.

4-13-2. ASSIGNMENT OF AIRSPACE


4–13–3. SECTOR PROCEDURES (RECEIVED)

For	Routing	Restriction	From
ALB+	JAMIE CONFR Q133 LLUND TRUDE V487 CANAN	(AT ALTITUDE)	54
ISP E	SIE BRIGS Q439 SARDI T320 ORCHA	AOB 230	12
ISP N	SIE BRIGS Q439 SARDI RICED KEYED	AOB 230	12
KHPN (PCT)	AGARD V44 SIE V139 RICED RICED#	CAP AOB 230	17
KISP	SIE BRIGS Q439 SARDI CCC	AOB 230	12
SWF+ [250+]	JAMIE CONFR Q481 DPK HUD#	(AT ALTITUDE)	54

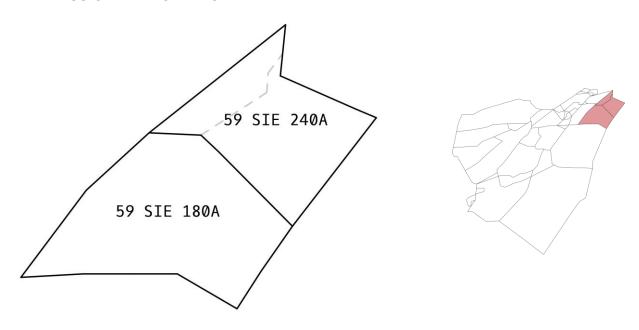
4-13-4. SECTOR PROCEDURES (GIVEN)

For	Routing	Restriction	То
ALB+	JAMIE CONFR Q133 LLUND TRUDE V487 CANAN	AOB 350	ZNY
BDL+	JAMIE CONFR Q481 DPK DPK#	ZIGGI @ 250	ZNY
BOS N SATS	JAMIE CONFR Q481 DPK MAD HFD DREEM#	BDRY AOB 310	ZNY
ISP E	SIE BRIGS Q439 SARDI T320 ORCHA	BDRY AOB 230	59
ISP N	SIE BRIGS Q439 SARDI RICED KEYED	BDRY AOB 230	59
KBOS	JAMIE CONFR Q133 JFK ROBUC#	BDRY AOB 370	ZNY
KBOS	Q419 JFK ROBUC# [ZNY CLSD]	NEWES @ 270	ZBW
KHPN (PCT)	AGARD V44 SIE V139 RICED RICED#	BDRY AOB 230	59

Coyle (58) 72

4-13-5. TERMINAL AIRSPACE ASSUMED

None.


Coyle (58) 73

Section 14. Sea Isle (59)

4-14-1. SECTOR NARRATIVE

Sea Isle manages northbound traffic landing in the New York metro area that is routed over Sea Isle-VOR. Timely descents are important so that aircraft make the required crossing altitudes. Potential head-to-head traffic on airways, particularly on the eastern side of the sector, requires extra attention to ensure conflicts are managed and traffic movement efficiency is maintained.

4-14-2. ASSIGNMENT OF AIRSPACE

4-14-3. SECTOR PROCEDURES (RECEIVED)

For	Routing	Restriction	From
ALB+	SWL V139 SARDI V91 BDR V487 CANAN	RADDS AOB 370, ABV JFK, BLW	
ALD+	SWE V 139 SANDI V91 DDN V407 CANAN	HPN	54
BDL+	KALDA Q97 DLAAY RADDS Q439 SARDI DPK#	RADDS AOB 370	54
BOS N SATS	KALDA Q97 DLAAY RADDS Q445 BRIGS Q439 SARDI	RADDS AOB 370	
DOSTVOATO	T320 GON ORW WOONS#	NADDO AOB 370	54
BOS S SATS	KALDA Q97 DLAAY RADDS Q439 SARDI T320 GON	RADDS AOB 370	
BOOOGATO	ORW V16 WOONS	NADBOAGB 670	54
ISP E	KALDA Q97 DLAAY RADDS Q445 BRIGS Q439 SARDI	RADDS AOB FL370, ABV JFK, BLW	
ISFE	T320 ORCHA	HPN	54
ISP E	SIE BRIGS Q439 SARDI T320 ORCHA	BDRY AOB 230	58
ISP N	KALDA Q97 DLAAY RADDS Q445 BRIGS Q439 SARDI	RADDS AOB FL370, ABV JFK, BLW	
ISF IN	RICED KEYED	HPN	54
ISP N	SIE BRIGS Q439 SARDI RICED KEYED	BDRY AOB 230	58
KFRG J	KALDA Q97 DLAAY RADDS Q439 SARDI CCC DPK	BDRY AOB 370	54
KHPN	KALDA Q97 DLAAY RADDS SIE BOUNO#	RADDS AOB 370, ABV JFK/BRIGS	54

Sea Isle (59) 74

KHPN	KALDA Q97 DLAAY RADDS Q439 SARDI RICED RICED#	RADDS AOB 370, ABV JFK	54
KHPN (PCT)	AGARD V44 SIE V139 RICED RICED#	BDRY AOB 230	58
KISP	KALDA Q97 DLAAY RADDS Q445 BRIGS Q439 SARDI RADDS AOB 370, ABV JFK, BLW CCC HPN		54
KISP	SIE BRIGS Q439 SARDI CCC	BDRY AOB 230	58
KJFK	KALDA Q108 SIE CAMRN#	ACTUP AOB 350	54
PVD+	KALDA Q97 DLAAY RADDS Q439 SARDI T320 ORCHA JORDN JORDN#	RADDS AOB 370	54
SWF+ [190-230]	KALDA Q97 DLAAY RADDS Q439 SARDI RICED MAD BRISS PWL TRESA	BDRY AOB 230	54

4-14-4. SECTOR PROCEDURES (GIVEN)

For	Routing	Restriction	То
ALB+	BRIGS T320 SARDI V91 BDR V487 CANAN	BRIGS AOB 210	ZNY
BDL+	BRIGS Q439 SARDI DPK#	BRIGS AOB 210	ZNY
BOS N SATS	CCC ORW DREEM#	AT ALTITUDE	ZBW
BOS N SATS	BRIGS Q439 SARDI T320 GON ORW WOONS#	BRIGS AOB 210	ZNY
BOS S SATS	CCC ORW WOONS#	AT ALTITUDE	ZBW
BOS S SATS	BRIGS Q439 SARDI T320 GON ORW V16 WOONS	BRIGS AOB 210	ZNY
CAPE APs	RIFLE LIBBE FLAPE MVY	AT ALTITUDE	ZBW
ISP E	BRIGS Q439 SARDI T320 ORCHA	BRIGS AOB 210	ZNY
ISP N	BRIGS Q439 SARDI RICED KEYED	BRIGS AOB 210	ZNY
KACK	RIFLE DEEPO#	AT ALTITUDE	ZBW
KADW	Q167 ZIZZI KNUKK ATR LAFLN SPISY#	ZIZZI @ LUFL	51
KBWI	ZIZZI KNUKK ATR LAFLN MIIDY#	ZIZZI @ LUFL	51
KDCA	ZIZZI KNUKK ATR LAFLN DEALE#	ZIZZI @ LUFL	51
KFRG J	BRIGS Q439 SARDI CCC DPK	BRIGS AOB 210	ZNY
KGON	BRIGS Q439 SARDI T320 ORCHA MONDI	FL240 - 310	ZBW
KHPN	SIE BOUNO#	BECKR @ 240	ZNY
KHPN	BRIGS Q439 SARDI RICED RICED#	BRIGS AOB 210	ZNY
KHPN (PCT)	BRIGS Q439 RICED RICED#	BRIGS AOB 210	ZNY
KIAD	ZIZZI ENO T358 OBWON T356 WOOLY MRB	ZIZZI @ LUFL	51
KISP	BRIGS Q439 SARDI CCC	BRIGS AOB 210	ZNY
KJFK	SIE CAMRN#	HOGGS @ LUFL	ZNY
KJFK	SIE CAMRN# [ZNY CLSD/N90 OPEN]	CAMRN @110/250K	N90
KMVY	RIFLE LIBBE FLAPE	AOB 370	ZBW
KRIC	ZJAAY ARICE JAMIE	BDRY AOB 260	54
ORF+	ZJAAY CCV	BDRY AOB 240	54
PVD+	ORCHA JORDN JORDN#	TOPRR AOB 370	ZBW
PVD+	BRIGS Q439 SARDI T320 ORCHA JORDN JORDN#	BRIGS AOB 210	ZNY
RDU+	ZJAAY TAQLE#	BDRY AOB 320	54
SWF+ [190-230]	BRIGS Q439 SARDI RICED MAD BRISS PWL TRESA	BRIGS AOB 210	ZNY

4-14-5. TERMINAL AIRSPACE ASSUMED

None.

Sea Isle (59) 75

Chapter 5. Quick Reference Guide

Section 1. QRG Directory

Descend Via	TRACON Handoff Codes	Exit Restrictions (Internal)	Exit Restrictions (External)	Sector Restrictions	Airspace Maps & Misc Ref
BWI	From PCT	To ACY	To ZBW	2-Way Split	Center Airspace
DCA	From ACY	To DOV	To ZID	3-Way Split	ZNY/ZBW/ZTL Shelves
IAD	From DOV	To FAY	To ZJX	05 Linden	Terminal Airspace
RIC	From FAY	To ILM	To ZNY	09 Dixon	Single Letter Airport Codes
RDU	From GSB	To NKT	To ZOB	12 Brooke	Assumed APP Airspace
EWR	From ILM	To ORF	To ZTL	17 Swann	ZDC32 2-way Map
LGA	From NHK	To PCT (CHP)	CKB TRACON	19 Woodstown	ZDC12 2-way Map
CLT	From NKT	To PCT (JRV)	GSO TRACON	20 Blackstone	ZDC32 3-way Map
	From NTU	To PCT (MTV)	To N90	32 Gordonsville	ZDC12 3-way Map
	From ORF	To PCT (SHD)	PHL TRACON	36 Raleigh	ZDC19 3-way Map
	From RDU	To RDU	Exit Airway Boundary Fix	37 Marlinton	
	From ROA	To ROA		51 Casino	
				52 Tech	
				54 Salisbury	
				58 Coyle	
				59 Sea Isle	

QRG Directory 76

QRG	ZDC	vZDC-ZDC-P-01I 12/18/25									
D/V	ZBW	ZID	ZJX	ZNY	ZOB	ZTL	PCT	RDU	ORF	PHL	N90

Section 2. ZDC Issued Descend-Via Bottom Altitudes

5-2-1. POTOMAC TRACON

For	Routing	Alt (QQ P)	Join by Fix	Handoff	
	ANTHM#	150	BUBBI	E1H (BUFFR)	
BWI	RAVNN# (THHMP/HBUDA)	150	WALKN	E41(O1AAV)	
	RAVNN# (BKW/HVQ)	190	DNKEY	E1J (OJAAY)	
	CAPSS#	130	BULII	E1J (OJAAY)	
DCA	FRDMM#	140	WEWIL		
DCA	NUMMY#	140	DRUZZ	E1L (LURAY)	
	TRUPS#	140	SUPRT		
	CAVLR#	130	BNTLY	E3B (BARIN)	
IAD	GIBBZ# (MGW)	110	MOSLE	ESNI (MANINIE)	
	GIBBZ# (JARLO/SITTR)	110	KILMR	E3N (MANNE)	
RIC	POWTN#	110	HONTA	E2L (FLTRK)	
NIC	SPIDR#	130	REDNG	EZL (FLIKK)	

5-2-2. RALEIGH TRACON

For	Routing	Alt (QQ P)	Join by Fix	Handoff
	ALDAN#	90	ALDAN	D1\\\ / \ D \\\\
RDU	DMSTR#	110	DMSTR	R1W (AR-W)
KDU	BLOGS#	110	BLOGS	D4E (AD E)
	TAQLE#	90	SWETP	R1E (AR-E)

5-2-3. NEW YORK ARTCC AIRPORTS

For	Routing	Alt (QQ P)	Join by Fix	Handoff
EWR	PHLBO#	80	WALKN	N4P (ARD)
LGA	PROUD#	100	DEPDY	N1D (EMPYR)

5-2-4. ATLANTA ARTCC AIRPORTS

For	Routing	Alt (QQ P)	Join by Fix	Handoff
CLT	CHSLY#	240	BURRZ	T29 (LEEON)

Section 3. TRACON to TRACON Handoff Codes

5-3-1. FROM PCT

Handoff To	Handoff Code
DOV	Δ4
JST	Δ7
MDT	Δ6
NHK	Δ2
ORF	Δ1
PHL	Δ5
ROA	Δ3

5-3-2. FROM ACY

Handoff To	Handoff Code
DOV	Δ1
PHL	Δ2
WRI	Δ3

5-3-3. FROM DOV

Handoff To	Handoff Code
ACY	Δ2
NHK	Δ4
PCT	Δ1
PHL	Δ3

5-3-4. FROM FAY

Handoff To	Handoff Code
CLT	Δ6
FLO	Δ5
GSB	Δ2
GSO	Δ7
ILM	Δ3
MYR	Δ4
RDU	Δ1

5-3-5. FROM GSB

Handoff To	Handoff Code
FAY	Δ4
ILM	Δ3
NKT	Δ2
RDU	Δ1

5-3-6. FROM ILM

Handoff To	Handoff Code

FAY	Δ2
FLO	Δ5
GSB	Δ3
MYR	Δ1
NKT	Δ4

5-3-7. FROM NHK

Handoff To	Handoff Code
DOV	Δ2
ORF	Δ3
PCT	Δ1

5-3-8. FROM NKT

Handoff To	Handoff Code
GSB	Δ2
ILM	Δ1
NTU	Δ3

5-3-9. FROM NTU

Handoff To	Handoff Code	
NKT	Δ2	
ORF	Δ1	

5-3-10. FROM ORF

Handoff To	Handoff Code
NHK	Δ2
NTU	Δ3
PCT	Δ1

5-3-11. FROM RDU

Handoff To	Handoff Code
FAY	Δ2
GSB	Δ1
GSO	Δ3

5-3-12. FROM ROA

Handoff To	Handoff Code
GSO	Δ2
PCT	Δ1

Section 4. Exit Restrictions (To Internal)

5-4-1. ACY

For	Routing	Restriction	From
ACY+	(ANY)	DSDG 80	51
ACY+	SIE	SIE AOB 80	51
WRI+	WAALK#	WAALK AOB 80	51

5-4-2. DOV

For	Routing	Restriction	From
DOV+	(ANY)	DSDG 80	51

5-4-3. FAY

For	Routing	Restriction	From
FAY+	(ANY)	DSDG 110	09

5-4-4. ILM

For	Routing	Restriction	From
ILM+	PAACK	DSDG 110	09

5-4-5. NKT

For	Routing	Restriction	From
NKT+	(ANY)	DSDG 110	09

5-4-6. ORF

For	Routing	Restriction	From
KRIC	JAMIE	JAMIE @ 120	54
ORF+	DRONE#	DRONE @ 110	09
ORF+	FAGED V286 STEIN	STEIN AOB 130	12
ORF+	TERKS#	TERKS @ 140	20
ORF+	CCV	BDRY (10 CCV) @ 100	54
PHF/LFI/FAF	COLIN HCM	DSDG 130	12

5-4-7. PCT (CHP)

For	Routing	Restriction	From
DOV+	LUNDY ARLFT#	BUBBI @ 150	05
KADW	LAFLN SPISY#	BILIT @ 110/250K	51
KBWI	ANTHM#	D/V	05
KBWI	EMI#	J: BUBBI @ 150	05
KBWI	EMI#	P: BUBBI @ 090	05
KBWI	MIIDY#	CHOPS @ 110/250K	51
KDCA	DEALE#	BILIT @ 110	51
KIAD	ENO T358 OBWON T356 WOOLY MRB	ENO AOB 80	51

5-4-8. PCT (JRV)

For	Routing	Restriction	From
DCA+ TP/PROP	IRONS#	10NM S EPICS @ 130	20
DOV+	ARLFT# / PXT V16 ENO	PXT/GOFER AOB 130	12
IAD SATS	TRSTN#	CABRL @ 130	20
KADW	VUDOO#	GOLOE @ 130	20
КСНО	(DIRECT)	DSDG 110 OR LOWER	37
KHEF/KJYO	TRSTN#	JOHOF @ 130	20
KIAD	WIGOL#	JOANZ @ 130	32
KRIC	KELCE DUCXS#	KELCE @ 110	20
KRIC	NEAVL DUCXS#	NEAVL @ 110	20
KRIC	LYH POWTN# / MOL SPIDR#	D/V	32

5-4-9. PCT (MTV)

For	Routing	Restriction	From
KBWI	RAVNN#	D/V	20
KBWI	RAVNN#	D/V	37
KCHO	Q75 GVE	AOB 220	17
KDCA	FRDMM#	D/V	05
KDCA	NUMMY#	D/V	05
KDCA	CAPSS#	D/V	20
KDCA	IRONS#	PEGBY @ 130	20
KDCA	TRUPS#	D/V	37

5-4-10. PCT (SHD)

For	Routing	Restriction	From
KDCA	TIKEE#	LLBEE @ 90	37
KIAD	GIBBZ#	D/V	05
KIAD	CAVLR#	D/V	20
KIAD	COATT#	OGATE @ 130	20
KIAD	DOCCS#	DOCCS @ 110/250K	37
KIAD	GIBBZ#	D/V	37

5-4-11. RDU

For	Routing	Restriction	From
RDU+	BUZZY#	[NE] BUZZY @ 110/250kt	09
RDU+	BUZZY#	[SW] BUZZY @ 110	09
RDU+	BLOGS# / DMSTR#	D/V	09
RDU+	TAQLE#	D/V	20
RDU+	ALDAN#	D/V	32

5-4-12. ROA

For	Routing	Restriction	From
KLYH	(ANY)	DSDG 110	52
ROA+	(ANY)	DSDG 110	52

Section 5. Exit Restrictions (To External)

5-5-1. ZBW ARTCC

For	Routing	Restriction	From
BOS N SATS	CCC ORW DREEM#	AT ALTITUDE	59
BOS S SATS	CCC ORW WOONS#	AT ALTITUDE	59
CAPE APs	RIFLE LIBBE FLAPE MVY	AT ALTITUDE	59
KACK	RIFLE DEEPO#	AT ALTITUDE	59
KBOS	Q419 JFK ROBUC# [ZNY CLSD]	NEWES @ 270	58
KGON	BRIGS Q439 SARDI T320 ORCHA MONDI	FL240 - 310	59
KMVY	RIFLE LIBBE FLAPE	AOB 370	59
PVD+	ORCHA JORDN JORDN#	TOPRR AOB 370	59

5-5-2. ZID ARTCC

For	Routing	Restriction	From
CRW+	(DIRECT)	AOB 230 DSDG 110	37
CVG SATS	HNN BRUSH GAVNN CVG	AOB 350	05
HTS+	(ANY)	AOB 280	05
KCMH	Q72 HACKS SCRLT SCRLT#	AOB 320	05
KCVG	COLNS GAVNN#	AOB 350	05

5-5-3. **ZJX ARTCC**

For	Routing	Restriction	From
CAE+	(ANY)	AOB 220	09
CHS+	RAPZZ AMYLU#	AOB 280	09
CHS+	MRPIT AMYLU#	AOB 280	36
FLO+	(ANY)	AOB FL230 DSDG 110	09
KCLT	MLLET2 / RASLN#	AOB 220	09
MYR+	PAACK WYLMS	AOB FL230 DSDG 110	09
SAV/HXD+	MRPIT Q409 SESUE SOOOP	AOB 340	09
SSC+	(ANY)	AOB 220	09

5-5-4. ZNY ARTCC

For	Routing	Restriction	From
ABE+	COURG SCAPE V377 HAR V162 DUMMR	DSDG 190	05
ALB+	Q22 RBV LGA TRUDE V487 CANAN	AOB 350	19
ALB+	JAMIE CONFR Q133 LLUND TRUDE V487 CANAN	AOB 350	58
ALB+	BRIGS T320 SARDI V91 BDR V487 CANAN	BRIGS AOB 210	59
BDL+	RBV Q419 DPK DPK#	RBV AOB 270	19
BDL+	JAMIE CONFR Q481 DPK DPK#	ZIGGI @ 250	58
BDL+	BRIGS Q439 SARDI DPK#	BRIGS AOB 210	59
BOS N SATS	RBV Q419 DPK MAD HFD DREEM#	BDRY AOB 310	19
BOS N SATS	JAMIE CONFR Q481 DPK MAD HFD DREEM#	BDRY AOB 310	58
BOS N SATS	BRIGS Q439 SARDI T320 GON ORW WOONS#	BRIGS AOB 210	59
BOS S SATS	BRIGS Q439 SARDI T320 GON ORW V16 WOONS	BRIGS AOB 210	59
ISP E	BRIGS Q439 SARDI T320 ORCHA	BRIGS AOB 210	59
ISP N	BRIGS Q439 SARDI RICED KEYED	BRIGS AOB 210	59

JFK/FRG PN/TP	PANZE V184 ZIGGI	BDRY AOB 150	51
KBOS	RBV Q419 JFK ROBUC#	BDRY AOB 370	19
KBOS	JAMIE CONFR Q133 JFK ROBUC#	BDRY AOB 370	58
KFRG J	BRIGS Q439 SARDI CCC DPK	BRIGS AOB 210	59
KHPN	BESSI CYN BOUNO#	BDRY (BESSI) @ 230	19
KHPN	SIE BOUNO#	BECKR @ 240	59
KHPN	BRIGS Q439 SARDI RICED RICED#	BRIGS AOB 210	59
KHPN (PCT)	BRIGS Q439 RICED RICED#	BRIGS AOB 210	59
KISP	BRIGS Q439 SARDI CCC	BRIGS AOB 210	59
KJFK	PANZE V44 CAMRN	BDRY AOB 170	51
KJFK	SIE CAMRN#	HOGGS @ LUFL	59
KSYR	J220/J227	AOB 310	05
MDT+	COURG SCAPE V377 HAR	DSDG 150	05
PVD+	Q22 RBV HTO JORDN#	BDRY AOB 330	19
PVD+	BRIGS Q439 SARDI T320 ORCHA JORDN JORDN#	BRIGS AOB 210	59
SWF+	RBV Q419 DPK HUD#	AOB 270	19
SWF+	BRIGS T320 SARDI RICED MAD BRISS PWL TRESA	BRIGS AOB 170	51
SWF+ [190-230]	BRIGS Q439 SARDI RICED MAD BRISS PWL TRESA	BRIGS AOB 210	59
SWF+ [250+]	JAMIE CONFR Q481 DPK HUD#	ZIGGI @ 250	58

5-5-5. **ZOB ARTCC**

For	Routing	Restriction	From
PIT+	Q69 RICCS LEJOY DEMME#	AOB FL230 DSDG 210 (J)	05
PIT+	Q69 RICCS LEJOY DEMME#	AOB FL230 DSDG 150 (P)	05

5-5-6. ZTL ARTCC

For	Routing	Restriction	Fro
101	nouting	Hostriotion	m
AVL	[N of GSO]	AOB 340	32
AVL	[N of GSO]	AOB 340	52
CAE+	GVE Q75 GSO	AOB 300	32
CLT SATS	LIB MAJIC#	AOB 200	09
GSP+	FUBLL JUNNR#	BDRY AOB 280	32
HKY/UKF/SVH	[ANY]	AOB 200 DSDG 170	32
HKY/UKF/SVH	[ANY]	AOB 200 DSDG 170	52
HKY/UKF/SVH	[ANY]	AOB 200 DSDG 170	52
JQF/RUQ/VUJ	LIB MAJIC#	AOB 200	09
KCLT	[COUPN/NUUMN] CHSLY#	AOB 220	09
KCLT	LIB MAJIC#	BDRY AOB 220 @280 KTS	09
KCLT	AIROW CHSLY#	D/V	32
KCLT	LYH MAJIC#	BDRY AOB 220	32
KCLT	LYH MAJIC#	@280 KTS	32
TRI	[ANY]	AOB 260	09
TRI	[ANY]	AOB 260	32
TRI	[ANY]	AOB 260	52
TYS	[N of GSO]	AOB 360	32
TYS	[N of GSO]	AOB 360	52

5-5-7. N90 TRACON

For	Routing	Restriction	From
KEWR	PHLBO#	D/V	19
KLGA	PROUD#	D/V	19
KJFK	SIE CAMRN# / PANZE V44 CAMRN [ZNY CLSD]	CAMRN @ 110/250K	51/59

5-5-8. PHL TRACON

For	Routing	Restriction	From
EWR SATS	JAIKE#	JAIKE @ 130	19
EWR SATS TP	SBY V29 DQO FROSE V3 SBJ	BLARE @ 110	51
EWR TP	SBY V29 DQO V479 RUUTH	BLARE @ 110	51
KPHL	BRIGS JIIMS#	IROKT @ 90	51
KPHL	[DASHA/ZJAAY] JIIMS#	HEKMN @ 90	51
KPHL	PAATS#	ESSSO @ 100 250K	51
PHL N SAT JET	JIIMS#	JIIMS @ 100 (NO SPD)	51
PHL N SAT JET	PAATS#	ESSSO @ 120 (NO SPD)	51
PHL N SAT TP	PXT V16 ENO V29 DQO	BLARE @ 110	51
PHL PN O/F	ENO V29 ETX	ENO @ 90	51
PHL TP O/F	ENO V29 ETX	BLARE @ 110	51

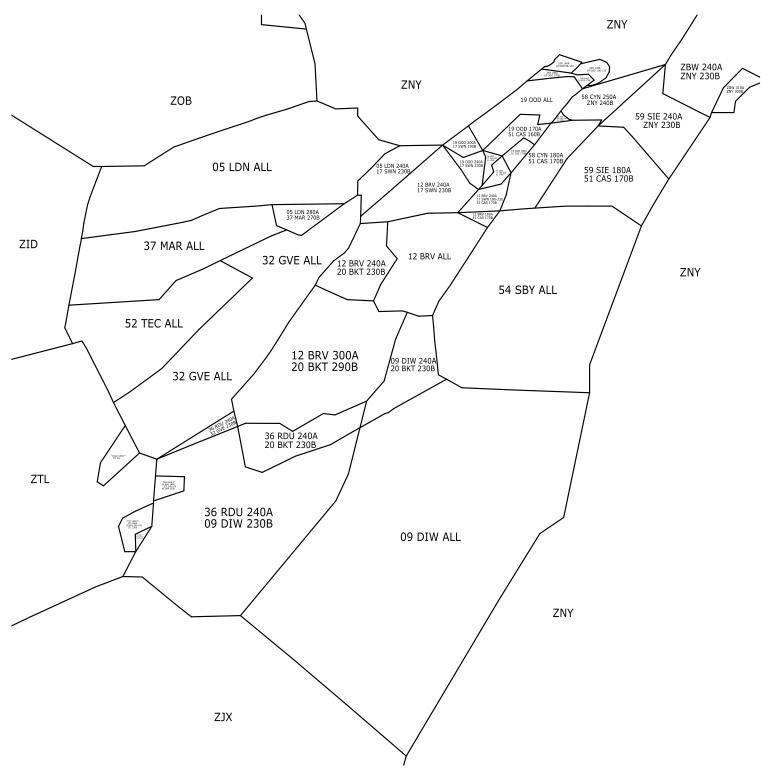
5-5-9. CKB TRACON

For	Routing	Restriction	From
CKB+	(DIRECT)	DSDG 110	05

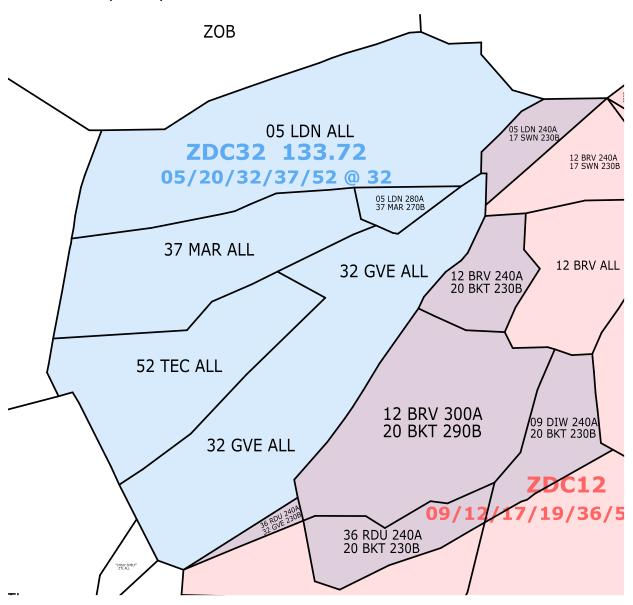
5-5-10. GSO TRACON

For	Routing	Restriction	From
CLT SATS	SBY FKN [ARGAL/LIB] NASCR#	BDRY AOB 130	09
CLT SATS	GVE LYH NASCR#	HENBY @ 120	32
CLT+ TP	SBY FKN RDU GSO V143 GIZMO	BDRY AOB 130	09
GSO+	CAE BLOCC#	BLOCC @ 110	09
GSO+	(DIRECT FROM ARGAL/RDU AREA)	BDRY AOB 130	09
GSO+	HENBY#	HENBY @ 110	32
JQF/RUQ/VUJ	SBY FKN [ARGAL/LIB] NASCR#	BDRY AOB 130	09
JQF/RUQ/VUJ	GVE LYH NASCR#	HENBY @ 120	32

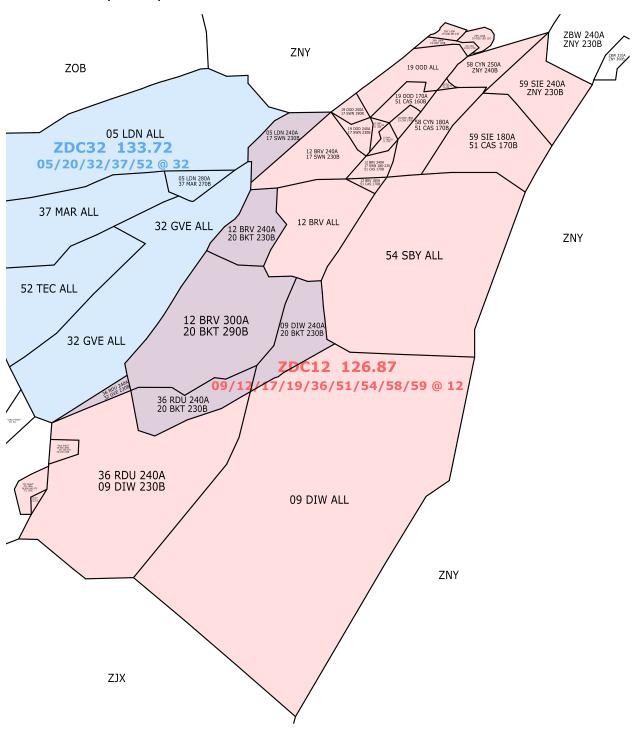
5-5-11. FINAL ZDC AIRSPACE FIX BY AIRWAY


Airway	Near Boundary Fix	Handoff Facility
AR3	GARIC	ZJX
AR8	TOMMZ	ZNY
AR9	ATLIC	ZNY
AR17	WAALT	ZJX
AR19	SAGGY	ZJX
AR22	IDOLS	ZJX
B24	JETER	ZNY

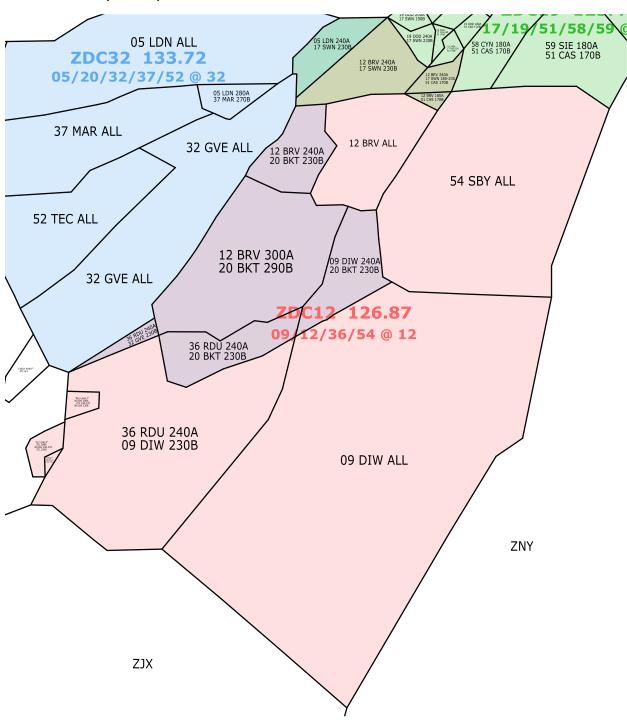
J8	PERRI	ZID
J24	OAKLE	ZID
J30	SHAAR	ZOB
J34	SHAAR	ZOB
J48	FANPO	ZNY
J149	SINDE	ZID
J162	LIZIO	ZOB
J211	BUSTR	ZOB
J211	JERES	ZNY
J213	ROCKA	ZID
J220	JERES	ZNY
N3A-11A	JETER	ZNY
Q22	BRAND	ZNY
Q22	KIDDO	ZTL
Q34	ASBUR	ZID
Q34	HULKK	ZNY
Q40	FEEDS	ZTL
Q54	AHOEY	ZTL
Q56	JOOLI	ZTL
Q58	LUMAY	ZTL
Q60	EVING	ZTL
Q64	IDDAA	ZTL
Q68	TOMCA	ZID
Q69	LUNDD	ZTL
Q72	GEQUE	ZID
Q75	BROSK	ZTL
Q75	TOOBN	ZNY
Q80	RONZZ	ZID
Q85	SMPRR	ZJX
Q87	LCAPE	ZJX
Q97	BRIGS	ZNY/ZBW
Q97	ELLDE	ZJX
Q99	POLYY	ZJX
Q103	DANCO	ZTL
Q103	SINDE	ZOB
Q107	GARIC	ZJX
Q109	LAANA	ZJX
Q113	SARKY	ZJX
Q119	HALEX	ZNY
Q129	GARIC	ZJX
Q129	PYTON	ZOB

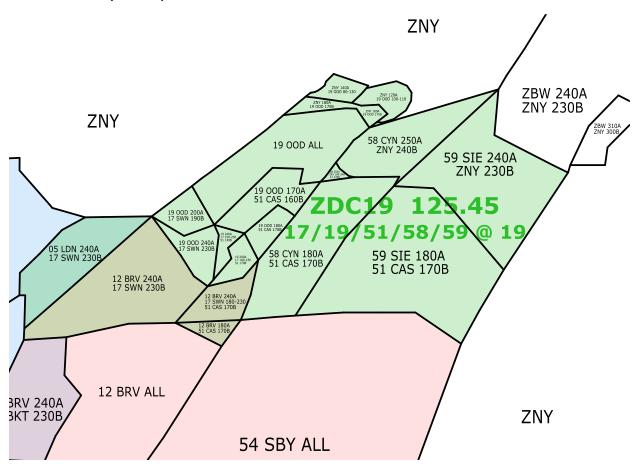

Q131	WAALT	ZJX
Q133	LEEAH	ZNY
Q135	RAPZZ	ZJX
Q167	TOPRR	ZNY/ZBW
Q172	RAPZZ	ZJX
Q176	STEVY	ZID
Q178	MCRAY	ZOB
Q221	JERES	ZNY
Q227	JERES	ZNY
Q409	WHITE	ZNY
Q409	MRPIT	ZJX
Q419	HULKK	ZNY
Q437	DITCH	ZNY
Q439	DRIFT	ZNY/ZBW
Q445	SHAUP	ZNY/ZBW
Q481	ZIGGI	ZNY
Y289	WAALT	ZJX
Y291	SAGGY	ZJX
Y313	IDOLS	ZJX
Y327	IDOLS	ZJX
Y481	DIXIE	ZBW
Y482	DIXIE	ZBW
Y497	DRIFT	ZNY/ZBW

Section 6. ZDC Airspace Configuration Charts


5-6-1. ZDC FULL FACILITY

5-6-2. ZDC32 (2-WAY)


5-6-3. ZDC12 (2-WAY)


5-6-4. ZDC32 (3-WAY)

5-6-5. ZDC12 (3-WAY)

5-6-6. ZDC19 (3-WAY)

Chapter 6. Traffic Management Unit

Section 1. Overview

6-1-1. PURPOSE

The ZDC Traffic Management Unit (TMU) is responsible for issuing traffic management initiatives (TMI) to ensure demand is balanced with available capacity. TMU initiatives are designed to minimize delays, prevent sector or airport saturation, and maintain orderly flows of traffic. Emphasis is placed on managing enroute traffic inbound to PCT airports and coordinating traffic flows to adjacent ARTCCs.

6-1-2. SCOPE OF OPERATIONS

TMU functions apply whenever traffic demand or complexity requires proactive management, such as during scheduled events, surge traffic, weather deviations, or when restrictions are imposed by adjacent facilities. TMU actions may include Miles-in-Trail (MIT) or altitude restrictions, reroutes, routing initiatives, and departure release programs. During routine operations TMU may remain passive, but during elevated demand it shall be staffed and actively engaged in managing flows and coordinating restrictions.

6-1-3. INTEGRATION WITH IDS

The IDS is the primary platform for implementing and communicating TMU initiatives. TMU may post messages to the TMU Notices pane to disseminate static information to selected facilities, send direct messages to individual positions, and manage departure releases through the IDS release request workflow. These tools form the backbone of TMU operations within ZDC and are the controlling mechanism for the dissemination of all traffic management initiatives.

6-1-4. OBJECTIVES

The objectives of the ZDC TMU are to maintain safe and efficient traffic flows, minimize airborne and ground delays, prevent sector or airport saturation, ensure compliance with restrictions issued by adjacent facilities and the VATUSA/DCC Command Center, and provide equitable, predictable flows during high-demand periods and events.

Overview 93

Section 2. Positions and Responsibilities

6-2-1. GENERAL

- **a.** TMU may be staffed by a single Traffic Management Coordinator (TMC) or by multiple functional roles during major events. When only a TMC is present, that individual assumes all responsibilities outlined in this section.
- **b.** Each position within the TMU may be consolidated or deconsolidated from the TMC position, in the same way sectors are combined and decombined. The TMC, or facility events team member responsible for the event, will determine configuration of the TMU.

6-2-2. TRAFFIC MANAGEMENT COORDINATOR (TMC)

The Traffic Management Coordinator (TMC) serves as the lead for the TMU. Positions within TMU combine to the TMC position when not staffed. Responsibilities include:

- **a.** Provides overall supervision of TMU operations.
- b. Ensures all TMU functions are coordinated and consistent with ZDC and national directives.
- **c.** Acts as primary point of contact with adjacent ARTCCs, TRACONs, and the VATUSA/DCC Command Center.
 - d. Assumes responsibilities of unstaffed TMU functions.

6-2-3. TRAFFIC MANAGEMENT EXTERNAL (TME)

The Traffic Management External (TME) position manages restrictions received from or issued to external facilities. Responsibilities include:

- a. Interfaces with adjacent ARTCCs and the VATUSA/DCC Command Center.
- **b.** Implements restrictions such as miles-in-trail, altitude caps, or reroute programs as directed.
- **c.** Ensures external restrictions are entered and accurately reflected in IDS or that automation driven inputs are accurately depicted.
- **d.** Coordinates with other TMU functions when restrictions impact multiple flows or sectors within ZDC.

6-2-4. TRAFFIC MANAGEMENT LOCAL (TML)

The Traffic Management Local (TML) position manages internal flows to ensure ZDC can deliver on external commitments and satisfy internal facilities volume limits. Responsibilities include:

- **a.** Establish internal miles-in-trail and altitude restrictions as required.
- **b.** Monitors sector demand and balances flows between ZDC sectors based on the active sector consolidation plan.
 - c. Issues internal flow advisories through IDS.

- d. Coordinates with other TMU functions to align internal actions with external requirements.
- **e.** Set additional internal program requirements to accommodate departures from ZDC/PCT airfields and coordinate with TMR to ensure adequate gaps are maintained to permit departures.

6-2-5. TRAFFIC MANAGEMENT RELEASE (TMR)

The Traffic Management Release (TMR) position manages the departure release process for all underlying ZDC airfields. Responsibilities include:

- **a.** Reviews release requests submitted via IDS and assigns release times based on known airborne enroute traffic, forecast TMI, and where applicable, in reference to the flying minute tables of this chapter.
 - **b.** Modifies or cancels releases when conditions change.
- **c.** Ensures compliance with release windows and coordinates with towers when requests expire or must be resubmitted.

Section 3. Departure Release Request Workflow

6-3-1. GENERAL

- **a.** The departure release process is used to regulate departures from ZDC airports to ensure compliance with traffic management initiatives (TMI) and external restrictions.
- **b.** All departure release requests and approvals shall be managed through the IDS release request workflow.
- **c.** Towers will not release an aircraft when a release request is pending or has expired without approval from TMU.

6-3-2. TOWER RESPONSIBILITIES

These requirements are prescribed to towers via the controlling publications for the respective facility and are duplicated here for reference and continuity.

- **a.** Submit a departure release request in IDS when an aircraft requests pushback, or at another "trigger" point when directed by TMU.
 - b. Inform the pilot of their assigned release time window once a release is received.
- **c.** Monitor IDS for release status and ensure departures become airborne within the assigned release window.
- **d.** Re-submit a new release request if the original release expires or coordinate directly with TMR to extend an expired time.

6-3-3. TMU RESPONSIBILITIES

- a. Evaluate each request based on enroute demand, active restrictions, and forecast flows.
- **b.** Assign a release time to achieve spacing requirements using flying-minutes tables and other tools.
 - **c.** Amend or cancel releases when conditions change.
 - d. Ensure all assigned releases are accurately reflected in IDS for tower visibility.

6-3-4. IDS FUNCTIONALITY

- **a.** Departure Release Request form is completed by any controller that needs a release time for an aircraft. TMU controllers may input a release request on behalf of a facility.
- **b.** When TMU inputs release requests, the ICAO identifier for the airport must be used (i.e. KDCA) to ensure the release assignment processes to the correct facilities IDS display.
- **c.** Use the release time assignment options to generate a release time after reviewing enroute traffic and other requirements.

12/18/25

d. Messages to the facility can be sent using the message tool (ICAO facility identifier must be used). These messages do not persist and once acknowledged cannot be viewed again.

Section 4. Release Time Determination

6-4-1. GENERAL

Flying-minutes tables provide a standardized reference for determining the average time required for aircraft to travel from departure runways to designated gate fixes. These values enable TMU to establish departure release times that achieve spacing requirements at enroute constraints. The flying times to fixes are conservative estimates as it's generally more manageable for the aircraft to be slightly early to the fix than late without a chance of making up lost miles.

6-4-2. TABLE STRUCTURE

- **a.** High volume ZDC airports have a paragraph for each departure configuration. The tables are intended to provide a clear reference point for determining flying times and accurately generating a release time.
 - **b.** Each configuration table includes the following information:
- **1. SID/PROC (Gate).** Use the line that most closely aligns with this element. When a SID is applicable it is listed, if a SID is not applicable then a procedure (i.e. airway, etc.) may be shown. The departure gate is shown in parenthesis for general reference and to provide an additional use of the timed fix.
- **2. Constrained.** Indicates the most likely constrained airport at the specific procedure line and timed fix will serve.
- **3. Timed Fix.** The point that the timing number is generated from. This is based on the paragraph configuration (departing airport/runway) and the downline route where merging of traffic streams will likely occur.
- **4. Time to Fix.** The average time value in flying minutes from wheels up to reaching the timed fix. This value is used in conjunction with enroute traffic estimated times to the fix to determine an appropriate release time.
 - 5. Notes. General remarks regarding the specific line.

6-4-3. CALCULATION OF RELEASE TIMES

- **a.** TMU shall determine the time a departing aircraft is required to cross a timed fix to meet miles-in-trail or other sequencing restrictions.
- **b.** The corresponding time to fix value shall be subtracted from the fix crossing time to establish the departure release time.

6-4-4. LIMITATIONS

Values are approximate and may require adjustment based on weather. Releases from multiple airports that will flow to the same timed fix must be sequenced as one by TMU when considering release times.

6-4-5. WASHINGTON DULLES INTERNATIONAL (IAD)

SID/PROC (GATE)	TMI	Timed Fix	30	N	S	Notes
CLTCH# (CLTCH)	ATL	KERRK	12	13	12	
JCOBY# (SWANN)	EWR	SWANN	14	11	15	
JCOBY# (AGARD)	LGA	ENO	20	17	21	Time to AGARD: 15 min
JCOBY# (COLIN)	ZJX./.	SCOOB	21	18	22	
JDUBB# (JDUBB)	ZTL./.	TYPNZ	12	13	12	
Q419 (SWANN)	BOS	BROSS	16	13	17	
SCRAM# (SCRAM)	CLT	DANOO	13	14	12	
T315 (AGARD)	JFK	LEEAH	24	21	25	Time to AGARD: 16 min

NOTE -

In the minutes columns, "30" refers to departures off Runway 30, "N" refers to departures from Runways 1L/1C/1R, and "S" refers to departures from Runways 19L/19C/19R.

6-4-6. WASHINGTON NATIONAL (DCA)

SID/PROC (GATE)	TMI	Timed Fix	N	S	Notes
AMEEE# (COLIN)	ZJX./.	SCOOB	18	15	
CLTCH# (CLTCH)	ATL	KERRK	15	14	
DOCTR# (AGARD)	LGA	ENO	17	16	Time to AGARD: 11
DOCTR# (AGARD)	JFK	LEEAH	21	20	Time to AGARD: 11
JDUBB# (JDUBB)	ZTL./.	TYPNZ	14	13	
SCRAM# (SCRAM)	CLT	DANOO	15	14	
SOOKI# (SWANN)	EWR	SWANN	11	10	
SOOKI# (SWANN)	BOS	BROSS	13	13	

NOTE -

In the minutes columns, "N" refers to departures in north flow from Runways 1 and 33, "S" refers to departures from Runways 19 and 15.

6-4-7. BALTIMORE/WASHINGTON INTERNATIONAL (BWI)

SID/PROC (GATE)	TMI	Timed Fix	Е	W	Notes
CONLE# (COLIN)	ZJX./.	SCOOB	17	18	
DUKPN# (SWANN)	EWR	SWANN	6	7	
DUKPN# (AGARD)	LGA	ENO	12	13	Time to AGARD: 8
DUKPN# (AGARD)	JFK	LEEAH	16	17	Time to AGARD: 8
DUKPN# (SWANN)	BOS	BROSS	8	10	
TERPZ# (CLTCH)	ATL	KERRK	19	19	
TERPZ# (JDUBB)	ZTL./.	TYPNZ	18	18	
TERPZ# (SCRAM)	CLT	DANOO	19	19	

NOTE -

In the minutes columns, "E" refers to departures in east flow from Runway 15R, "W" refers to departure from Runway 28.

Section 5. Miles-in-Trail Procedures

6-5-1. GENERAL

Miles-in-Trail (MIT) restrictions are applied to manage traffic flows between sectors and facilities by specifying the minimum required longitudinal spacing between successive aircraft. MIT may be used to protect sector capacity, ensure compliance with external restrictions, or balance traffic demand with available enroute resources. Altitude separation does not alleviate the MIT requirement. All sectors handling aircraft with MIT requirements must maintain situational awareness of other sectors also working aircraft that fall under the same MIT requirement and coordinate when necessary to ensure the exit restriction will be met.

6-5-2. CALCULATING MIT

- **a.** The miles-in-trial value is determined by working backwards from the point where the required spacing must be met. This point is generally the last fix in the providing facility's airspace.
- **b.** Enroute MIT should be planned to a higher value than what is requested to accommodate departures from underlying facilities within ZDC. Determination of how much higher is based on forecast and known departure traffic that must be accommodated into the overhead stream. This over spacing is what will create slots for releases to be merged into.
- **c.** For heavy traffic events it may be necessary to as much as *double* the requested MIT internally so that departures will have slots within the overhead stream. This is especially true for heavy PCT departure volumes that will be blended into northeast bound markets when a continuous flow of departures is expected (i.e. BOS, EWR, LGA, JFK).
- **d.** Internal (ZDC to ZDC) sector MIT requirements should be considered, especially for northeast focused event traffic due to the disproportionate number of PCT area departures that will attempt to join the enroute stream.

6-5-3. BASELINE MIT VALUES

- **a.** For routine operations, TMU should plan to deliver at least 50% more spacing than the required MIT at the top of descent (TOD) when traffic is consolidated into a single merged stream. This buffer allows room for absorption of variations in climb performance, wind, and other traffic impacts. Controllers working sectors will work to close any excess spacing by the exit point based on real-time conditions.
- **b.** When multiple transitions for a single arrival or procedure are in use, TMU should use a worst-case planning model such that each individual transition has sufficient spacing to support the required MIT after blending. For example, if the receiving facility requires 10 MIT and three transitions are in use to feed that stream, each transition should be planned at 30 MIT to produce a manageable traffic load to blend each feed to a single 10 MIT stream.
- **c.** TMU should consider reducing the number of active transitions when feasible to achieve lower MIT requirements.
- **d.** TMU will determine if a pass back to adjacent facilities is necessary based on current and forecast conditions. Depending on traffic volume, ZDC staffing, and requested downline MIT, ZDC

may be able to manage all spacing requirements within ZDC and not require entering MIT from adjacent facilities.

6-5-4. REQUESTING MIT FROM ADJACENT FACILITIES

- **a.** When inbound demand is expected to exceed ZDC capacity, TMU shall request Miles-in-Trail (MIT) restrictions from the adjacent facility responsible for feeding the traffic stream.
- **b.** Requests should be made far enough in advance to allow the adjacent facility to implement spacing without requiring last-minute tactical intervention.
 - c. Each request must specify:
 - 1. The restriction in miles (e.g. "20 MIT").
 - 2. The constrained element (e.g. "EWR" or "ZNY via JFK").
 - **3.** Unless otherwise specified, the requested MIT will be in effect by the mutual boundary.
- **d.** In addition to the MIT restriction, single-stream routing at the boundary should be considered. Consolidating flows while still in the adjacent facility's airspace is more effective than merging within ZDC (e.g., all IAD via GIBBZ# over JARLO, no SITTR).

6-5-5. PROVIDING MIT TO ADJACENT FACILITIES

- **a.** When ZDC is required to deliver MIT to an adjacent facility, to include PCT, TMU shall establish internal programs to ensure the restriction is met at the boundary.
- **b.** Internal measures may include departure release times, sector-to-sector spacing requirements, or rerouting aircraft as necessary to achieve compliance.
- **c.** TMU shall coordinate with internal sectors to ensure spacing is created sufficiently upstream so that the required MIT is delivered without last-minute vectoring or airborne holding.
- **d.** When demand within ZDC exceeds capacity, coordinate with the receiving facility to determine if the full MIT requirement is necessary or if a temporary reduced MIT value can be accepted to minimize enroute holding.

6-5-6. ACTIVE MIT ADJUSTMENTS

- **a.** When it becomes necessary to change MIT restriction already in effect, TMU shall identify a "cutover" aircraft. The cutover aircraft is the first flight for which the new MIT value will be applied, and all subsequent aircraft in the stream must comply with the new spacing.
- **b.** The cutover aircraft should be selected at least 15 minutes prior to implementation of the change to allow all impacted facilities to adjust and accommodate the change.
- **c.** TMU should consider downstream impacts when adjusting MIT, particularly if spacing changes may disrupt existing merges, reroutes, or active departure releases.
- **d.** When a 15 minute or greater effective period is not possible, consider directing holding to achieve the increase in spacing.

6-5-7. RESTRICTION FIXES

Certain fixes within and adjacent to ZDC airspace serve as control points where Miles-in-Trail restrictions are commonly applied. These fixes provide consistent reference points for traffic management coordination between facilities. The following table identifies the fix, the facility normally requesting spacing, and the facility responsible for providing spacing.

a. Received by Potomac TRACON

TBL 6-5-7a
Restriction Fixes Entering Potomac TRACON

Airport	Route	Restriction Fix	Providing Facility
	CLIPR#	CLIPR	ZNY
	SKILS#	SKILS	ZNY
	TRUPS#	SUPRT	ZDC
DCA	FRDMM#	WEWIL	ZDC
	NUMMY#	DRUZZ	ZDC
	CAPSS#	BULII	ZDC
	DEALE#	BILIT	ZDC
	HYPER# / PRTZL#	HYPER	ZNY
	WAYNZ#	DAFIX	ZNY
IAD	GIBBZ# (MGW)	MOSLE	ZDC
	GIBBZ# (JARLO/SITTR)	OTTTO	ZDC
	CAVLR#	BNTLY	ZDC
BWI	TRISH#	TRISH	ZNY
	ANTHM#	BUBBI	ZDC
DVVI	RAVNN# (THHMP/HBUDA)	WALKN	ZDC
	RAVNN# (CACYE/CJAAE)	DNKEY	ZDC

b. Received by Raleigh TRACON

TBL 6-5-7b
Restriction Fixes Entering Raleigh TRACON

Airport	Route	Restriction Fix	Providing Facility
RDU	ALDAN#	ALDAN	ZDC
	BLOGS#	BLOGS	ZDC
	DMSTR#	DMSTR	ZDC
	TAQLE#	SWETP	ZDC

c. Received by Washington ARTCC (Landing ZDC)

TBL 6-5-7c
Restriction Fixes Landing ZDC Traffic

Airport	Route	Restriction Fix	Providing Facility
DCA	DEALE#	Q167.EMJAY	ZBW
	FRDMM#	BUCKO	ZOB

	TRUPS#	SEALZ	ZID
	CAPSS#	Q56.JOOLI	ZTL
	CAPSS#	BARMY/KILNS	CLT, ZTL
	GIBBZ# (MGW)	MGW	ZOB
IAD	GIBBZ# (JARLO/SITTR)	BURTT	ZID
IAD	CAVLR#	Q60.EVING	ZTL
	CAVLR#	BARMY/KILNS	CLT, ZTL
	ANTHM#	NUSMM	ZOB
BWI	MIIDY#	Q167.EMJAY	ZBW
	RAVNN# (CACYE/CJAAE)	TBART	ZID
	RAVNN# (THHMP)	Q58.LUMAY	ZTL
	RAVNN# (THHMP)	BARMY/KILNS	CLT, ZTL

d. Received by Washington ARTCC (Overflight)

TBL 6-5-7d
Restriction Fixes for ZDC Enroute (Overflight) Traffic

Airport	Route	Restriction Fix	Providing Facility
	Q22	KIDDO	ZTL
	Q60	EVING	ZTL
BOS	Q87	LCAPE	ZJX
	Q131	WAALT	ZJX
	Q97	ELLDE	ZJX
CLT	Q75	MURPH	ZNY
	Q22	KIDDO	ZTL
E/A/D	QJ60	EVING	ZTL
EWR	AR3: Q107/Q129	GARIC	ZJX
	Q87	LCAPE	ZJX
	Q64	IDDAA	ZTL
JFK	AR19/Y291	SAGGY	ZJX
	Q109	JOHAR	ZJX
1.04	Q22	KIDDO	ZTL
	Q60	EVING	ZTL
LGA	AR3: Q107/129	GARIC	ZJX
	Q87	LCAPE	ZJX

Section 6. Route Initiatives

6-6-1. GENERAL

Route initiatives are applied to adjust traffic flows for efficiency, capacity management, or weather avoidance. These initiatives may take the form of tactical reroutes for individual aircraft or broader traffic management routing programs applicable to entire flows (standing reroute). TMU will coordinate tactical reroutes directly with the sector working the effected aircraft. TMU will publish standing route initiatives to IDS for all controller awareness. The first ZDC controller to work an aircraft impacted by a TMU standing reroute will issue the required routing.

6-6-2. TACTICAL REROUTE

- **a.** Tactical rerouting consists of assigning an amended route to select aircraft. This routing is "pulling out" individual aircraft from an over saturated stream while the remaining aircraft remain on the original routing.
- **b.** TMU will provide specific routing to be issued directly to the sector that is working the aircraft. That sector will issue the new route.
- **c.** The sector shall amend the remarks to indicate "ZDC TMU TACTICAL REROUTE" so downline controllers are aware of the reason for the routing and so that the aircraft is left on the newly assigned route.

6-6-3. STANDING REROUTE

- **a.** Standing reroutes are traffic management initiatives that apply to entire flows or markets of traffic rather than individual aircraft.
 - **b.** TMU shall publish standing reroutes in IDS with clear applicability, including:
 - **1.** The affected departure airports or sectors.
 - **2.** The applicable destinations or traffic streams.
 - **3.** The routing to be issued.
 - 4. An effective time period for the route
- **c.** The first ZDC sector to work an aircraft subject to a standing reroute shall ensure the new routing is issued to the pilot.
- **d.** When standing reroutes are in effect, TMU shall monitor compliance and coordinate with affected towers, sectors, and adjacent facilities as required.
 - e. Standing reroutes shall remain in effect until cancelled by TMU.

NOTE -

Event Planners (EP) and Controllers-in-Charge (CIC) will publish routes when known in advance through DCC and other channels to aid in general NAS coordination and pilot planning.

Route Initiatives 104

6-6-4. RESPONSIBILITY FOR FLIGHT PLAN AMENDMENTS

- **a.** Airborne aircraft. The enroute sector with track control is responsible for entering the amended routing into the system and issuing the new route to the aircraft.
- **b.** Aircraft on the ground. TMU will coordinate with the clearance delivery controller (or controller performing the delivery function) to ensure the aircraft receives the new routing. TMU may make the routing amendment for the delivery controller workload permitting. Both controllers must clearly understand who will make the amendment in the system. The delivery controller must ensure that after the PDC is sent the new route is confirmed with the pilot to make certain there is no ambiguity in what route will be flown.

Route Initiatives 105

Section 7. Tools and Reference

6-7-1. INFORMATION DISPLAY SYSTEM

- **a.** IDS is the authoritative platform for all internal TMU operations. All departure releases, MIT restrictions, and routing initiatives must be published in IDS.
- **b.** The Departure Release Request Form allows controllers to request releases and receive TMU-assigned release times. The controller that is providing service for an airport will enter a release request for any aircraft requesting departure to a constrained airport.
- **c.** The TMU window displays all active MIT restrictions, reroute initiatives, and advisories. Controllers must maintain visibility of IDS while working to ensure compliance with current TMU instructions.
- **d.** TMU must ensure that TMU notices are targeted so that only the impacted facilities see the message to avoid overloading any given position with non-pertinent information.

6-7-2. VATUSA TOOLS

- **a.** VATUSA Command Center planning resources are available through the VATUSA Command Center (https://perti.vatcscc.org). PERTI data entry should be completed before the event by the event planner and is a planning tool primarily for pre-event planning and coordination.
- **b.** VATUSA TMU Map is a situational awareness tool that provides color coding and regional traffic flow awareness.

REFERENCE -

vZDC-ZDC-P-01I, para 6-7-5, Situational Awareness Tools, VATUSA TMU Map.

6-7-3. SIMTRAFFIC TOOLS

a. Overview. SimTraffic provides demand analysis and time-metering functionality to support TMU decision-making.

REFERENCE -

https://simtraffic.net

- **b.** The following features all apply in reference to the selected airport in the Config tab. Key features found in TMU Tools include:
- **1. Load Graph**. Displays number of arrivals forecast for next three hours from present time. The graph depicts time in 10-minute increments and categorizes traffic based on expected, planned, and a metered rate if applicable.
- 2. Airport Arrival Demand Chart (AADC). AADC displays a bar chart that shows number of arrivals in 15-minute increments for the selected airport at the arrival fix. Each configured arrival (STAR) displays in a unique color. The chart allows TMU to analyze where potential traffic surges will exist from different arrival directions. Additional views are selectable and the time can be increased to increments of 30 or 60 minutes.

Tools and Reference 106

- **3. Time-Based Graphical User Interface (TGUI)**. TGUI shows in near real-time a depiction of scheduled versus actual status of arrivals to each runway at the selected airport. The middle of the ladder depicts a time scale displaying number of minutes after the present hour. The scale slides down as minutes pass. The left side of the time scale shows aircraft callsigns relative to their ETA to the reference point. The right side of the time scale shows aircraft relative to their scheduled time of arrival. If the flight is on-time, the flight's callsign is show in the same relative position on both sides of the time scale. When a flight is early or late, the callsign will show up in a different relative location on the right and left sides.
- **4. Plan-Based Graphical User Interface (PGUI)**. PGUI functions in a similar way to the TGUI. The primary difference is PGUI incorporates a charting component to see geographically where the aircraft are on the arrival. TGUI is *when* the aircraft are coming and PGUI is *where* the aircraft are going. TGUI is useful in release time planning, PGUI is useful in balancing and monitoring arrival saturation.
- **5. Sector Alerts**. The Sector Activity Monitor & Alerts table displays current and expected traffic over a defined time period. All ZDC sectors are defined as well as the standard configurations. The sector alert functionality is limited in it will only recognize aircraft landing at the airport selected in Config, it does *not* see all aircraft that will be or are in the sector.

6-7-4. CONSOLIDATED RADAR CLIENT

- **a.** Controllers staffing TMU positions will connect and activate using the TMU positions. These positions are considered ZDC facility positions and will permit full ERAM functionality when activated.
 - **b.** Specific ERAM functions that are especially useful for TMU purposes:
- **1. LA**. The LA command will display distance and magnetic bearing between two points. When the first point is "picked" as the track, the second point "enter" (middle click) will generate a time value. The CRC/ERAM documentation Track Range Commands section also provides several additional uses of the LA function to incorporate speed and time calculations.
- **2. LB**. The LB command will display time and distance between a track and waypoint. This command is incredibly useful for determining when an aircraft will reach a specified fix (i.e. a "Time to Fix" point from the timetables in this chapter) which then allows accurate release time calculations.
- **3. Vector Lines**. While activated on the TMU position, any FDB can be opened and the vector lines used to evaluate closer in traffic. Vector lines options are 1, 2, 4, or 8 minutes.
- **4. Quick Look**. Use of the quick look function to view sectors enables TMU to accurately assess traffic in at any given position. While quick looking a position, that sector's traffic can be evaluated, vector lines used, route lines evaluated, all allowing the TMU controller to gain a better understanding of the real time traffic situation.
- **5. Secondary Frequency**. TMU should add all active sectors within ZDC to their secondary frequency selection. This will allow the controller to monitor (select RX) on any position at any time. To simulate an override capability, TMU will select RX anytime voice coordination will be conducted with a controller. This permits the TMU controller to listen to the controller's frequency

Tools and Reference 107

and stop talking if radio traffic occurs during the call. This practice mimics real world override capability.

6-7-5. SITUATIONAL AWARENESS TOOLS

a. VATUSA TMU Map. This map tool offers a color-coded map that provides a quick view of airborne traffic. Aircraft colors reflect the destination of the aircraft as configured by ZDC.

REFERENCE -

https://www.vatusa.net/tmu/map/ZDC/dark

TBL 6-7-5a
VATUSA TMU Map (ZDC) Color Assignments

Aircraft Color	Destination Airport		
Red 📥	DCA and Mount Vernon Area (MTV) airports.		
Blue 📥	IAD and other Shenandoah Area (SHD) airports.		
Yellow 🚣	BWI and other Chesapeake Area (CHP) airports.		
Green 📥	RDU		
Brown 📥	Aircraft with a destination within ZDC not otherwise assigned a color.		
Cyan 🚣	EWR		
Orange 📥	LGA		
Lime 🚣	JFK		
Purple 📥	PHL		
Violet 🚣	CLT		
Gray 📥	BOS		
Black 📥 or white* 👍	All other aircraft that are not assigned a color (not landing within ZDC). Black is displayed in "light" mode. White is displayed in "dark" mode.		

- **b. VAT-Spy**. VAT-Spy is a situational awareness tool that provides a real-time map of traffic levels and ATC staffing across the VATSIM network. TMU may use VAT-Spy to monitor controller availability, traffic clustering, and the overall distribution of flows entering or leaving ZDC. The ability to filter and focus on specific flows, such as departures from PCT or arrivals to northeast markets, allows TMU to identify potential bottlenecks and anticipate where Miles-in-Trail or reroute initiatives may be required. While useful for identifying trends and gaps within traffic streams, VAT-Spy is a supplemental display only and is not authoritative. All TMU restrictions and directives must be issued and enforced through IDS or other controlling systems. Controllers should maintain visibility of VAT-Spy when workload permits, but IDS and CRC remain the primary sources of TMU operational data.
- **c. VATSIM-Radar**. VATSIM-Radar is a web-based situational awareness platform that provides traffic and controller data in an accessible dashboard format. TMU may use VATSIM-

Tools and Reference 108

Radar to supplement IDS and CRC by quickly reviewing current operations at specific airports or sectors. The tool is particularly valuable for identifying demand at high-volume airports, monitoring controller staffing, and validating whether traffic management initiatives are being followed in real time. As with other supplemental tools, VATSIM-Radar is not authoritative, and all TMU directives must originate from IDS or CRC.

6-7-6. EVENT SPECIFIC WORKSHEETS

Reserved.

Tools and Reference 109

Chapter 7. Special Operations

Section 1. General

7–1–1. PURPOSE

This chapter prescribes ZDC controller responsibilities and procedures for handling VSOA operations within the ZDC AOR. It ensures safe integration of SUA, aerial refueling, carrier, and intercept operations into the NAS while maintaining compliance with FAAO JO 7110.65, VATSIM Special Operations Policy, and the vZDC–USNv LOA (effective 1 Aug 2025).

REFERENCES -

vZDC-USNv Letter of Agreement, dated 1 August 2025 VATSIM-POL-Special Operations Version 4.0, dated 1 April 2024

7-1-2. SCOPE

These procedures are derived from the LOA with USNv, an approved VATSIM VSOA. The procedures within this LOA, per VATSIM policy, may be utilized by all partner VSOAs, not just the signatory organization. This chapter implements the requirements of this LOA as applicable to controllers working ZDC.

General 110

Section 2. Special Use Airspace

7-2-1. SCHEDULING

VSOA pilots will schedule SUA via the vzdc.org Airspace Scheduling Module. Scheduled airspace will be displayed in IDS. Controllers will accommodate airspace scheduled greater than 24 hours in advance. Airspace scheduled less than 24 hours in advance will be accommodated workload permitting.

7-2-2. MISSION NUMBERS

When airspace is scheduled a mission number is assigned to the reservation. The format of the mission number indicates to the controller when the airspace reservation was entered.

- a. More than 24 hours in advance. Mission numbers will consist of four numerical digits.
- **b.** Less than 24 hours in advance. Mission numbers will consist of three numerical digits followed by a letter.

7-2-3. ACTIVATION

Airspace activation should begin once a clearance has been issued for an aircraft that will take the airspace. If ZDC issues the clearance, then begin coordination afterwards where necessary to activate. If a facility other than ZDC issues the clearance, begin coordination after receiving notification from the facility that issued the clearance.

- **a.** Coordinate with ZNY and ZJX to request their portions of the warning areas to be activated, if applicable.
- **b.** Coordinate with other ZDC sectors to request their portions of special use airspace that will be activated. Controllers will coordinate and determine which sector is best positioned to serve as the working controller for the airspace.
- **c.** When the aircraft using the airspace have completed their mission and have been issued a clearance leaving the airspace, return any airspace released to the owning facility and advise them the airspace is now cold.

7-2-4. ENTRY CLEARANCE

The following phraseology will be used to clear an aircraft into any special use airspace. This includes airspace that has been released to a military radar unit.

PHRASEOLOGY -

CLEARED INTO (SUA name), (bottom altitude/flight level) THROUGH (top altitude/flight level), WORKING FREQUENCY (frequency), REPORT FIVE MINUTES PRIOR TO R-T-B ON (frequency), FREQUENCY CHANGE APPROVED.

7-2-5. EXIT CLEARANCE

When complete with the airspace, issue instructions for the aircraft to resume its flight plan using standard phraseology. The aircrafts original IFR flight plan is still considered active unless the pilot cancels IFR or requests an amended clearance.

Special Use Airspace 111

7-2-6. WORKING FREQUENCY ASSIGNMENT

Frequencies have been designated for use for certain special use airspaces. The purpose of these frequencies is so that an aircraft working SUA can have a dedicated frequency that ATC will *not* be transmitting. If ATC needs to contact the aircraft in the airspace, ATC may transmit on the working frequency to the pilot.

TBL 7-2-6
Working Frequency and CRC Position Association

Airspace	Working Frequency	CRC Position Label
W72	118.12	ZDC – Warn 72
W107	135.72	ZDC – Warn 107
W122	135.87	ZDC – Warn 122
W386	132.15	ZDC – Warn 386

7-2-7. MILITARY RADAR UNIT

Military Radar Units (MRU) are *non-commissioned* facilities that provide radar service only to participating aircraft. They are *not* considered components of the National Airspace System. ZDC will coordinate SUA and then release the SUA to the MRU. The MRU will provide "whiskey alerts" if aircraft will spill out of their assigned airspace. When aircraft are complete in their airspace the MRU will instruct the aircraft to return to ZDC frequencies for further clearance. MRUs will not issue control instructions that would take aircraft outside the cleared airspace.

Special Use Airspace 112

Section 3. Aerial Refueling

7-3-1. ALTITUDE ASSIGNMENT

Ensure aircraft are assigned altitudes that provide at least 1000ft separation. Once aircraft have advised that they are MARSA with the other participating aircraft, assign the aircraft a block altitude of at least 3000ft.

7-3-2. AERIAL REFUELING TRACKS

Tracks are not currently displayed. Pilots filing for an AR track may indicate in the remarks the track number but should utilize waypoint-waypoint filing in the flight plan route field.

7-3-3. RANDOM AERIAL REFUELING

Clear aircraft requested random aerial refueling via the flight plan route.

7-3-4. COMPLETION OF AERIAL REFUELING

Following completion of refueling, instruct the aircraft to report level at altitudes within the assigned block that provide at least 1000ft separation. Once vertical separation is established clear aircraft via their flight plan route. Vectors or route clearances may be given if it is clear that the instruction is only applicable once the pilot determines it is safely clear of the other participating aircraft.

Aerial Refueling 113

Section 4. Carrier Operations

7-4-1. **GENERAL**

- **a.** Carrier operations are conducted by VSOA partner organizations and coordinated through ZDC in accordance with the vZDC–USNv Letter of Agreement.
- **b.** Carrier operations must be conducted no closer than 100 nautical miles from the shoreline, except when entirely contained within an active warning area.
- **c.** ZDC retains jurisdiction of all controlled airspace within the ZDC AOR. Portions of warning areas and other airspace may be delegated to Carrier Air Traffic Control Centers (CATCC) when authorized and coordinated.

7-4-2. COORDINATION

- **a. Location Determination**. CATCC will coordinate with ZDC to operate within assigned warning airspace or to have released an area not to exceed 100NM radius from a defined waypoint/fix that is at least 100NM from the coast line.
- **b. Adjacent ARTCC Coordination**. When the carrier operation will be centered in airspace under ZDC AOR, ZDC will coordinate to block airspace with adjacent facilities. If other facilities are unable to release the airspace to ZDC, ZDC will inform CATCC. CATCC will be responsible for containing operations within the available airspace or coordinating with ZDC to make an appropriate accommodation.
- **c. Transfer of Control**. Automated handoffs may be utilized when available. If unable to utilize automation, manual transfer of control will be accomplished no later than the boundary of the released or activated airspace.
- **d. SUA Activation**. If CATCC will have SUA released to it, the procedures for releasing and coordinating airspace to release will be completed by ZDC and the airspace released to CATCC.

Carrier Operations 114

Section 5. Intercept Operations

7-5-1. GENERAL

- **a.** Intercept operations are restricted to VSOA pilots and may only be conducted in accordance with the vZDC-USNv LOA and VATSIM Special Operations Policy.
- **b.** Intercept taskings are authorized workload permitting. Controllers retain full discretion to delay, modify, or cancel intercept operations at any time.
- **c.** Intercepts may be requested by ZDC controllers or offered by participating VSOA pilots. Controllers must ensure that such operations do not adversely affect the safe, orderly, and expeditious handling of general traffic on the network.

7-5-2. PROCEDURES

a. Pilot Availability Notification.

- 1. VSOA pilots may notify ZDC of availability for intercept taskings via private message.
- **2.** Controllers are not required to acknowledge availability messages. Repeated messages are not permitted.

b. Tasking Initiation.

- **1.** When initiating an intercept, the controller will send a private message to the pilot containing: aircraft type, callsign, reason for intercept, and approximate location.
 - 2. The pilot will respond via private message whether it is available to accept the tasking.

c. Clearance and Departure.

- **1.** Controllers will issue an IFR clearance to the intercepting aircraft. Instructions for the intercepting aircraft will follow standard phraseology and procedures.
- **2.** For expeditious departure and nature of unknown routing potential, a clearance via "radar vectors" alone is sufficient.

d. Airborne Operations.

- **1.** Controllers will provide vectors and/or route clearances to guide the intercept aircraft to the target aircraft.
 - 2. Vertical separation will be maintained between aircraft.
- **3.** Interceptors will operate with due regard only after reaching the target aircraft and only as necessary to conduct the intercept operation.

e. Termination.

1. The intercept pilot must notify ZDC whether the intention is to follow the aircraft to the destination or break off the intercept.

- **2.** ATC may suspend or terminate the intercept operation at any time if workload, traffic, or safety considerations dictate.
- **3.** When complete, the intercept aircraft will be cleared to its destination in accordance with the routing requirements of this order.

INDEX

2	BOTTOM ALTITUDES SEE DESCEND VIA BOTTOM ALTITUDES BOUNDARY16
2-WAY CONSOLIDATION 42	BROOKE (12)51
3	С
3-WAY CONSOLIDATION 44	CALCULATING MIT100 CALCULATION OF RELEASE TIMES98
Α	CASINO (51)65 CHANGES SEE DENOTATION OF CHANGES CLEVELAND ARTCC
AIR ROUTE TRAFFIC CONTROL CENTER16 AITSEE AUTOMATED INFORMATION TRANSFER AOASEE AT OR ABOVE	CLEVELAND ARTCC
AOB	CRCSEE CONSOLIDATED RADAR CLIENT CROSS COUPLE38
AREA OF RESPONSIBILITY16 ARTCCSEE AIR ROUTE TRAFFIC CONTROL	D SEE DESCEND VIA
CENTER ASSIGNED ALTITUDE28 ASSUMED TERMINAL AIRSPACE	D/V
DELEGATION (2-WAY)43 ASSUMED TERMINAL AIRSPACE DELEGATION (3-WAY)46	DEPARTURE RELEASE REQUEST96 DESCEND VIA16 DESCENDING16
AT OR ABOVE15 ATIS SEE AUTOMATED TERMINAL INFORMATION SERVICE	DESCEND-VIA BOTTOM ALTITUDES
ATLANTA ARTCC17 AUTOMATED INFORMATION TRANSFER15, 32	E
AUTOMATED POINT OUTS	EDST SEE ENROUTE DECISION SUPPORT TOOL EN ROUTE AUTOMATION MODERNIZATION16, 28
AWAY STATUS30	EN ROUTE INFORMATION DISPLAY SYSTEM16, 40 ENROUTE DECISION SUPPORT TOOL16, 35
BASELINE MIT VALUES100	ENROUTE DECISION SUPPORT TOOL 16, 39 ENROUTE LINE DESIGNATIONS
BDRY SEE BOUNDARY BLACKSTONE (20)57	MODERNIZATION ERIDSSEE EN ROUTE INFORMATION
BOSTON ARTCC17	DISPLAY SYSTEM, SEE EN ROUTE INFORMATION DISPLAY SYSTEM

EVENT SPECIFIC WORKSHEETS109	ZDC (Whole Facility)18
EXIT RESTRICTIONS (TO EXTERNAL)82	ZDC12 (2-Way)89
EXIT RESTRICTIONS (TO INTERNAL)80	ZDC12 (3-Way)92
	ZDC19 (3-Way)92
F	ZDC32 (2-Way)88
F	ZDC32 (3-Way)90
	ZNY/ZBW Shelves
FIX BY AIRWAY86	MARLINTON (37)
FOURTH LINE29	MILES-IN-TRAIL PROCEDURES100
FREQUENCIES18	
	N
G	
•	NEW YORK ARTCC17
GORDONSVILLE (32)59	NON-TOWERED AIRPORTS30
GONDONSVILLE (32)9	NON TOWERED AND ORTOLOGICAL
Н	0
HOW TO USE THIS DOCUMENT14	OVERRIDE39
1	Р
•	•
IAFDOF <i>SEE</i> INAPPROPRIATE ALTITUDE FOR	PCTSEE POTOMAC TRACON
DIRECTION OF FLIGHT	PDCSEE PRE DEPARTURE CLEARANCE
IDS SEE INFORMATION DISPLAY SYSTEM	PGUI SEE PLAN-BASED GRAPHICAL USER
INAPPROPRIATE ALTITUDE FOR DIRECTION	INTERFACE
OF FLIGHT16, 34	PLAN-BASED GRAPHICAL USER
INDIANAPOLIS ARTCC17	INTERFACE107
INFORMATION DISPLAY SYSTEM16, 40	POTOMAC TRACON16
INTERIM ALTITUDE28	PRE DEPARTURE CLEARANCE16
1141 ET (1117 ODE20	PROCEDURE ALTITUDE28
	PURPOSE
J	
JACKSONVILLE ARTCC17	Q
	OD OFF AUTOMATED DOINT OUT
1	QPSEE AUTOMATED POINT OUTS QQSEE INTERIM ALTITUDE
_	
LETTER OF AGREEMENT16	QQ P
LINDEN (05)47	
LOASEE LETTER OF AGREEMENT	QUICK REFERENCE GUIDE
LOWEST USABLE FLIGHT LEVEL16	QZSEE ASSIGNED ALTITUDE
LUFLSEE LOWEST USABLE FLIGHT LEVEL	
LUFLSEE LUWEST USABLE FLIGHT LEVEL	R
М	D (D CIDE)
141	R (R-SIDE)SEE RADAR POSITION
MADO	RASEE RADAR ASSOCIATE
MAPS	RADAR ASSOCIATE (DA)
Approach Controls22 Full Facility Sectorization87	RADAR ASSOCIATE (RA)
1 an 1 active occionization	RADAR POSITION16

RADAR POSITION (R)26	TMC SEE TRAFFIC MANAGEMENT
RALEIGH (36)61	COORDINATOR, SEE TRAFFIC
RDU SHELF 19	MANAGEMENT COORDINATOR
REDUCED SEPARATION ELIGIBILITY AREA19	TME SEE TRAFFIC MANAGEMENT EXTERNAL
REDUCED VERTICAL SEPARATION MINIMA	TMLSEE TRAFFIC MANAGEMENT LOCAL
16	TMR . SEE TRAFFIC MANAGEMENT RELEASE
RELEASE TIME98	TMU SEE TRAFFIC MANAGEMENT UNIT
RESTRICTION FIXES102	TMU MAP108
ROUTE AMMENDMENTS29	TOWER DATA-LINK SYSTEM17, 36
ROUTE INITIATIVES104	TPSEE TURBO PROF
RVSMSEE REDUCED VERTICAL SEPARATION MINIMA	TRACON SEE TERMINAL RADAR APPROACH
	TRACON HANDOFF CODES78
	TRAFFIC MANAGEMENT COORDINATOR94
S	TRAFFIC MANAGEMENT EXTERNAL94
	TRAFFIC MANAGEMENT LOCAL94
SALISBURY (54)70	TRAFFIC MANAGEMENT RELEASE95
SATELLITE AIRPORTS16	TRAFFIC MANAGEMENT UNIT93
SATS	TURBO PROP
SEA ISLE (59)74	TURBU FRUF17
SECONDARY POSITION24	
SFC	V
SHELVING19	-
SIMTRAFFIC106	VATSIM-RADAR108
SINGLE LETTER AIRPORT IDENTIFIERS29	VAT-SPY108
SOP	VATUSA TOOLS106
PROCEDURE	VCI SEE VOICE COMMUNICATION
STANDARD OPERATING PROCEDURE 17	INDICATOR
STANDARD TERMINAL AUTOMATION	VIRTUAL NATURAL AIRSPACE SYSTEM 17
REPLACEMENT SYSTEM17	VIRTUAL VOICE SWITCHING AND
STANDING REROUTE104	COMMUNICATIONS SYSTEM38
STARS SEE STANDARD TERMINAL	VIRTUAL WASHINGTON ARTCC
AUTOMATION REPLACEMENT SYSTEM	VNAS SEE VIRTUAL NATIONAL AIRSPACE
SURFACE17	SYSTEM
SWANN (17)53	VOICE COMMUNICATION INDICATOR 17
5VAIVIV (17)	VSCS .SEE VIRTUAL VOICE SWITCHING AND
	COMMUNICATIONS SYSTEM
T	VZDC SEE VIRTUAL WASHINGTON ARTCO
	VZDC SEE VIRTUAL WASHINGTON ARTCC
TACTICAL REROUTE104	
TDLS SEE TOWER DATA-LINK SYSTEM	W
TECH (52)68	
TERMINAL AIRSPACE22	WASHINGTON ARTCC17
TERMINAL AIRSPACE ASSUMED BY	WOODSTOWN (19)55
SECTOR23	
TERMINAL LINE DESIGNATIONS39	
TERMINAL RADAR APPROACH CONTROL .17	Z
TGUI SEE TIME-BASED GRAPHICAL USER	
INTERFACE	ZBWSEE BOSTON ARTCO
TIME-BASED GRAPHICAL USER INTERFACE	ZDCSEE WASHINGTON ARTCO
107	ZID SEE INDIANAPOLIS CENTER

12/18/25

ZJX.....SEE JACKSONVILLE ARTCC ZOB......SEE CLEVELAND ARTCC ZNY SEE NEW YORK ARTCC ZTL.....SEE ATLANTA ARTCC

APPENDIX. HYPERLINKS

Atlanta ARTCC

Boston ARTCC

Cleveland ARTCC

Indianapolis ARTCC

Jacksonville ARTCC

New York ARTCC

vZDC IDS

vZDC ASX

VATUSA PERTI

SimTraffic

Hyperlinks 121